Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

Understanding the bias in machine learning systems for cardiovascular disease risk assessment: : The first of its kind review

Published: 01 March 2022 Publication History

Abstract

Background

Artificial Intelligence (AI), in particular, machine learning (ML) has shown promising results in coronary artery disease (CAD) or cardiovascular disease (CVD) risk prediction. Bias in ML systems is of great interest due to its over-performance and poor clinical delivery. The main objective is to understand the nature of risk-of-bias (RoB) in ML and non-ML studies for CVD risk prediction.

Methods

PRISMA model was used to shortlisting 117 studies, which were analyzed to understand the RoB in ML and non-ML using 46 and 32 attributes, respectively. The mean score for each study was computed and then ranked into three ML and non-ML bias categories, namely low-bias (LB), moderate-bias (MB), and high-bias (HB), derived using two cutoffs. Further, bias computation was validated using the analytical slope method.

Results

Five types of the gold standard were identified in the ML design for CAD/CVD risk prediction. The low-moderate and moderate-high bias cutoffs for 24 ML studies (5, 10, and 9 studies for each LB, MB, and HB) and 14 non-ML (3, 4, and 7 studies for each LB, MB, and HB) were in the range of 1.5 to 1.95. Bias ML < Bias non-ML by ∼43%. A set of recommendations were proposed for lowering RoB.

Conclusion

ML showed a lower bias compared to non-ML. For a robust ML-based CAD/CVD prediction design, it is vital to have (i) stronger outcomes like death or CAC score or coronary artery stenosis; (ii) ensuring scientific/clinical validation; (iii) adaptation of multiethnic groups while practicing unseen AI; (iv) amalgamation of conventional, laboratory, image-based and medication-based biomarkers.

Highlights

Risk-of-Bias (RoB) in Machine Learning (ML) studies for cardiovascular disease (CVD) risk prediction using 46 AI attributes.
Mean score computed, ranked, plotted using slope method, and two cutoffs established, and evaluating the three categories of risk measured: low-bias (LB), moderate-bias (MB), and high-bias (HB)
Validating the RoB computation using analytical slope method along with establishing the recommendations to lower the RoB.

References

[1]
S. Kaptoge, L. Pennells, D. De Bacquer, M.T. Cooney, M. Kavousi, G. Stevens, L.M. Riley, S. Savin, T. Khan, S. Altay, World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions, Lancet Global Health 7 (10) (2019) e1332–e1345.
[2]
S.K. Banchhor, N.D. Londhe, T. Araki, L. Saba, P. Radeva, N.N. Khanna, J.S. Suri, Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: a review, Comput. Biol. Med. 101 (2018) 184–198.
[3]
V. Viswanathan, A.D. Jamthikar, D. Gupta, N. Shanu, A. Puvvula, N.N. Khanna, L. Saba, T. Omerzum, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, C. S, S. Joshi, H. Fiscian, A.A. Folson, D.H. Wu, Z. Ruzsa, A. Nicolaides, A. Sharma, D.L. Bhatt, J.S. Suri, Low-cost preventive screening using carotid ultrasound in patients with diabetes, Front. Biosci. 25 (2020) 1132–1171,.
[4]
A.D. Jamthikar, A. Puvvula, D. Gupta, A.M. Johri, V. Nambi, N.N. Khanna, L. Saba, S. Mavrogeni, J.R. Laird, G. Pareek, Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review, Int. Angiol.: a Journal of the International Union of Angiology 40(2) (2021) 150–164,.
[5]
V. Viswanathan, A.D. Jamthikar, D. Gupta, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, Integration of estimated glomerular filtration rate biomarker in image-based cardiovascular disease/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease, Int. Angiol.: a journal of the International Union of Angiology 39 (4) (2020) 290–306.
[6]
A.D. Jamthikar, D. Gupta, A. Puvvula, A.M. Johri, N.N. Khanna, L. Saba, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, R. Kolluri, A.M. Sharma, V. Viswanathan, V.S. Rathore, J.S. Suri, Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging, Rheumatol. Int. 40 (12) (2020) 1921–1939.
[7]
N.N. Khanna, A.D. Jamthikar, D. Gupta, M. Piga, L. Saba, C. Carcassi, A.A. Giannopoulos, A. Nicolaides, J.R. Laird, H.S. Suri, S. Mavrogeni, A.D. Protogerou, P. Sfikakis, G.D. Kitas, J.S. Suri, Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning-based tissue characterization, Curr. Atherosclerosis Rep. 21 (2) (2019) 7.
[8]
M. Porcu, L. Mannelli, M. Melis, J.S. Suri, C. Gerosa, G. Cerrone, G. Defazio, G. Faa, L. Saba, Carotid plaque imaging profiling in subjects with risk factors (diabetes and hypertension), Cardiovasc. Diagn. Ther. 10 (4) (2020) 1005.
[9]
L. Saba, G. Micheletti, W. Brinjikji, P. Garofalo, R. Montisci, A. Balestrieri, J. Suri, J. DeMarco, G. Lanzino, R. Sanfilippo, Carotid intraplaque-hemorrhage volume and its association with cerebrovascular events, Am. J. Neuroradiol. 40 (10) (2019) 1731–1737.
[10]
J. Hippisley-Cox, C. Coupland, P. Brindle, Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study, BMJ (2017) 357.
[11]
Sr D'Agostino, R. B, R.S. Vasan, M.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, General cardiovascular risk profile for use in primary care: the Framingham Heart Study, Circulation 117 (6) (2008) 743–753.
[12]
R.M. Conroy, K. Pyörälä, A.e. Fitzgerald, S. Sans, A. Menotti, G. De Backer, D. De Bacquer, P. Ducimetiere, P. Jousilahti, U. Keil, Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project, Eur. Heart J. 24 (11) (2003) 987–1003.
[13]
P.M. Ridker, J.E. Buring, N. Rifai, N.R. Cook, Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score, JAMA 297 (6) (2007) 611–619.
[14]
D.C. Goff, D.M. Lloyd-Jones, G. Bennett, S. Coady, R.B. D’agostino, R. Gibbons, P. Greenland, D.T. Lackland, D. Levy, C.J. O’donnell, ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American heart association task force on practice guidelines, J. Am. Coll. Cardiol. 63 (25 Part B) (2013) 2935–2959. 2014.
[15]
E. Cuadrado-Godia, A.D. Jamthikar, D. Gupta, N.N. Khanna, T. Araki, M. Maniruzzaman, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: logistic regression approach, Comput. Biol. Med. 108 (2019) 182–195.
[16]
N.N. Khanna, A.D. Jamthikar, D. Gupta, A. Nicolaides, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma, T. Omerzu, H.S. Suri, Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: a diabetic study, Comput. Biol. Med. 105 (2019) 125–143.
[17]
M. Roffi, C. Patrono, J.P. Collet, C. Mueller, M. Valgimigli, F. Andreotti, J.J. Bax, M.A. Borger, C. Brotons, D.P. Chew, B. Gencer, G. Hasenfuss, K. Kjeldsen, P. Lancellotti, U. Landmesser, J. Mehilli, D. Mukherjee, R.F. Storey, S. Windecker, E.S.C.S.D. Group, 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European society of Cardiology (ESC), Eur. Heart J. 37 (3) (2016) 267–315.
[18]
M. Task Force, G. Montalescot, U. Sechtem, S. Achenbach, F. Andreotti, C. Arden, A. Budaj, R. Bugiardini, F. Crea, T. Cuisset, C. Di Mario, J.R. Ferreira, B.J. Gersh, A.K. Gitt, J.S. Hulot, N. Marx, L.H. Opie, M. Pfisterer, E. Prescott, F. Ruschitzka, M. Sabate, R. Senior, D.P. Taggart, E.E. van der Wall, C.J. Vrints, ESC Committee for Practice Guidelines (CPG), J.L. Zamorano, S. Achenbach, H. Baumgartner, J.J. Bax, H. Bueno, V. Dean, C. Deaton, C. Erol, R. Fagard, R. Ferrari, D. Hasdai, A.W. Hoes, P. Kirchhof, J. Knuuti, P. Kolh, P. Lancellotti, A. Linhart, P. Nihoyannopoulos, M.F. Piepoli, P. Ponikowski, P.A. Sirnes, J.L. Tamargo, M. Tendera, A. Torbicki, W. Wijns, S. Windecker, R. Document, J. Knuuti, M. Valgimigli, H. Bueno, M.J. Claeys, N. Donner-Banzhoff, C. Erol, H. Frank, C. Funck-Brentano, O. Gaemperli, J.R. Gonzalez-Juanatey, M. Hamilos, D. Hasdai, S. Husted, S.K. James, K. Kervinen, P. Kolh, S.D. Kristensen, P. Lancellotti, A.P. Maggioni, M.F. Piepoli, A.R. Pries, F. Romeo, L. Ryden, M.L. Simoons, P.A. Sirnes, P.G. Steg, A. Timmis, W. Wijns, S. Windecker, A. Yildirir, J.L. Zamorano, 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology, Eur. Heart J. 34 (38) (2013) 2949–3003.
[19]
N.N. Khanna, A.D. Jamthikar, T. Araki, D. Gupta, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J.R. Laird, H.S. Suri, Nonlinear model for the carotid artery disease 10‐year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: a Japanese diabetes cohort study, Echocardiography 36 (2) (2019) 345–361.
[20]
A.D. Jamthikar, D. Gupta, L. Saba, N.N. Khanna, K. Viskovic, S. Mavrogeni, J.R. Laird, N. Sattar, A.M. Johri, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, V. Viswanathan, A. Sharma, G.D. Kitas, A. Nicolaides, R. Kolluri, J.S. Suri, Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: a narrative review of integrated approaches using carotid ultrasound, Comput. Biol. Med. 126 (2020) 104043.
[21]
U.R. Acharya, O. Faust, V. Sree, G. Swapna, R.J. Martis, N.A. Kadri, J.S. Suri, Linear and nonlinear analysis of normal and CAD-affected heart rate signals, Comput. Methods Progr. Biomed. 113 (1) (2014) 55–68.
[22]
L. Cui, Y. Xing, Y. Zhou, L. Wang, K. Liu, D. Zhang, Y. Chen, Carotid intraplaque neovascularisation as a predictive factor for future vascular events in patients with mild and moderate carotid stenosis: an observational prospective study, Ther Adv Neurol Disord 14 (2021) 17562864211023992.
[23]
J.E. Herr, M.-F. Hétu, T.Y. Li, P. Ewart, A.M. Johri, Presence of calcium-like tissue composition in carotid plaque is indicative of significant coronary artery disease in high-risk patients, J. Am. Soc. Echocardiogr. 32 (5) (2019) 633–642.
[24]
A.M. Johri, K.A. Lajkosz, N. Grubic, S. Islam, T.Y. Li, C.S. Simpson, P. Ewart, J.S. Suri, M.F. Hetu, Maximum plaque height in carotid ultrasound predicts cardiovascular disease outcomes: a population-based validation study of the American society of echocardiography's grade II-III plaque characterization and protocol, Int. J. Cardiovasc. Imag. 37 (5) (2021) 1601–1610.
[25]
S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, S. Badalamenti, J.S. Suri, Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images, IEEE Trans. Instrum. Meas. 56 (4) (2007) 1265–1274.
[26]
N.N. Khanna, A.D. Jamthikar, D. Gupta, T. Araki, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J.R. Laird, H.S. Suri, A. Gupta, S. Mavrogeni, A. Protogerou, P. Sfikakis, G.D. Kitas, J.S. Suri, Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0, Med. Biol. Eng. Comput. 57 (7) (2019) 1553–1566.
[27]
F. Molinari, C.S. Pattichis, G. Zeng, L. Saba, U.R. Acharya, R. Sanfilippo, A. Nicolaides, J.S. Suri, Completely automated multiresolution edge snapper--a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database, IEEE Trans. Image Process. 21 (3) (2012) 1211–1222.
[28]
L. Saba, A. Jamthikar, D. Gupta, N.N. Khanna, K. Viskovic, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, V. Viswanathan, A. Nicolaides, D.L. Bhatt, J.S. Suri, Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited?, Int. Angiol. 38 (6) (2019) 451–465.
[29]
L. Saba, K.M. Meiburger, F. Molinari, G. Ledda, M. Anzidei, U.R. Acharya, G. Zeng, S. Shafique, A. Nicolaides, J.S. Suri, Carotid IMT variability (IMTV) and its validation in symptomatic versus asymptomatic Italian population: can this be a useful index for studying symptomaticity?, Echocardiography 29 (9) (2012) 1111–1119.
[30]
P.J. Touboul, M.G. Hennerici, S. Meairs, H. Adams, P. Amarenco, N. Bornstein, L. Csiba, M. Desvarieux, S. Ebrahim, M. Fatar, R. Hernandez Hernandez, M. Jaff, S. Kownator, P. Prati, T. Rundek, M. Sitzer, U. Schminke, J.C. Tardif, A. Taylor, E. Vicaut, K.S. Woo, F. Zannad, M. Zureik, Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the advisory board of the 3rd and 4th watching the risk symposium, 13th and 15th European stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006, Cerebrovasc. Dis. 23 (1) (2007) 75–80.
[31]
L. Saba, N. Agarwal, R. Cau, C. Gerosa, R. Sanfilippo, M. Porcu, R. Montisci, G. Cerrone, Y. Qi, A. Balestrieri, Review of Imaging Biomarkers for the Vulnerable Carotid Plaque, JVS: Vascular Science, 2021.
[32]
L. Saba, J.S. Suri, Multi-Detector CT Imaging: Principles, Head, Neck, and Vascular Systems, vol. 1, CRC Press, 2013.
[33]
J. Seabra, J. Sanches, Ultrasound Imaging: Advances and Applications, Springer, New York, 2012.
[34]
P. Radeva, J.S. Suri, Vascular and intravascular imaging trends, analysis, and challenges, volume 2; plaque characterization, Vascular Intravascular Imaging Trends (2019).
[35]
K. Liu, J.S. Suri, Automatic Vessel Indentification for Angiographic Screening, Google Patents, 2005.
[36]
N.D. Londhe, J.S. Suri, Superharmonic imaging for medical ultrasound: a review, J. Med. Syst. 40 (12) (2016) 1–16.
[37]
J.M. Sanches, A.F. Laine, J.S. Suri, Ultrasound Imaging, Springer, 2012.
[38]
A.M. Johri, K.A. Lajkosz, N. Grubic, S. Islam, T.Y. Li, C.S. Simpson, P. Ewart, J.S. Suri, M.-F. Hétu, Maximum plaque height in carotid ultrasound predicts cardiovascular disease outcomes: a population-based validation study of the American society of echocardiography's grade II–III plaque characterization and protocol, Int. J. Cardiovasc. Imag. 37 (5) (2021) 1601–1610.
[39]
N. Ikeda, A. Gupta, N. Dey, S. Bose, S. Shafique, T. Arak, E.C. Godia, L. Saba, J.R. Laird, A. Nicolaides, biology, Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement, Ultrasound in medicine 41 (5) (2015) 1247–1262.
[40]
N. Ikeda, N. Dey, A. Sharma, A. Gupta, S. Bose, S. Acharjee, S. Shafique, E. Cuadrado-Godia, T. Araki, L. Saba, Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: stroke risk assessment, Comput. Methods Progr. Biomed. 141 (2017) 73–81.
[41]
N. Ikeda, T. Araki, N. Dey, S. Bose, S. Shafique, A. El-Baz, J. Suri, Automated and accurate carotid bulb detection, its verification and validation in low quality frozen frames and motion video, Int. Angiol. 33 (6) (2014) 573–589.
[42]
M. Biswas, L. Saba, S. Chakrabartty, N.N. Khanna, H. Song, H.S. Suri, P.P. Sfikakis, S. Mavrogeni, K. Viskovic, J.R. Laird, E. Cuadrado-Godia, A. Nicolaides, A. Sharma, V. Viswanathan, A. Protogerou, G. Kitas, G. Pareek, M. Miner, J.S. Suri, Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: a screening tool for cardiovascular/stroke risk assessment, Comput. Biol. Med. 123 (2020) 103847.
[43]
V. Viswanathan, A.D. Jamthikar, D. Gupta, N. Shanu, A. Puvvula, N.N. Khanna, L. Saba, T. Omerzum, K. Viskovic, S. Mavrogeni, Low-cost preventive screening using carotid ultrasound in patients with diabetes, Front. Biosci. 25 (2020) 1132–1171.
[44]
L. Saba, F. Molinari, K. Meiburger, M. Piga, G. Zeng, R. Achraya, A. Nicolaides, J. Suri, What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically?, Int. Angiol.: a journal of the International Union of Angiology 31 (5) (2012) 483–489.
[45]
F. Molinari, K.M. Meiburger, L. Saba, U.R. Acharya, L. Famiglietti, N. Georgiou, A. Nicolaides, R.S. Mamidi, H. Kuper, J.S. Suri, Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient Indian population epidemiological study: results of AtheroEdge® software, in: Multi-modality Atherosclerosis Imaging and Diagnosis, Springer, 2014, pp. 209–219.
[46]
F. Molinari, K.M. Meiburger, J. Suri, Automated high-performance cIMT measurement techniques using patented AtheroEdge™: a screening and home monitoring system, in: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2011.
[47]
A. Jamthikar, D. Gupta, N.N. Khanna, T. Araki, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A. Protogerou, P.P. Sfikakis, G.D. Kitas, V. Viswanathan, G. Pareek, M. Miner, J.S. Suri, A special report on changing trends in preventive stroke/cardiovascular risk assessment via B-mode ultrasonography, Curr. Atherosclerosis Rep. 21 (7) (2019) 25.
[48]
A.D. Jamthikar, A. Puvvula, D. Gupta, A.M. Johri, V. Nambi, N.N. Khanna, L. Saba, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, A. Nicolaides, A.M. Sharma, V. Viswanathan, V.S. Rathore, R. Kolluri, D.L. Bhatt, J.S. Suri, Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review, Int. Angiol. 40 (2) (2021) 150–164.
[49]
V. Viswanathan, A. Puvvula, A.D. Jamthikar, L. Saba, A.M. Johri, V. Kotsis, N.N. Khanna, S.K. Dhanjil, M. Majhail, D.P. Misra, Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: a narrative review, World J. Diabetes 12 (3) (2021) 215.
[50]
L. Saba, M. Biswas, V. Kuppili, E.C. Godia, H.S. Suri, D.R. Edla, T. Omerzu, J.R. Laird, N.N. Khanna, S. Mavrogeni, The present and future of deep learning in radiology, Eur. J. Radiol. 114 (2019) 14–24.
[51]
M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, E. Cuadrado-Godia, J.R. Laird, R.T. Marinhoe, J.M. Sanches, A. Nicolaides, State-of-the-art review on deep learning in medical imaging, Front. Biosci. 24 (2019) 392–426.
[52]
M. Maniruzzaman, N. Kumar, M.M. Abedin, M.S. Islam, H.S. Suri, A.S. El-Baz, J.S. Suri, Comparative approaches for classification of diabetes mellitus data: machine learning paradigm, Comput. Methods Progr. Biomed. 152 (2017) 23–34.
[53]
M. Maniruzzaman, M.J. Rahman, M. Al-MehediHasan, H.S. Suri, M.M. Abedin, A. El-Baz, J.S. Suri, Accurate diabetes risk stratification using machine learning: role of missing value and outliers, J. Med. Syst. 42 (5) (2018) 1–17.
[54]
V. Kuppili, M. Biswas, A. Sreekumar, H.S. Suri, L. Saba, D.R. Edla, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization, J. Med. Syst. 41 (10) (2017) 1–20.
[55]
L. Saba, N. Dey, A.S. Ashour, S. Samanta, S.S. Nath, S. Chakraborty, J. Sanches, D. Kumar, R. Marinho, J.S. Suri, Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm, Comput. Methods Progr. Biomed. 130 (2016) 118–134.
[56]
U.R. Acharya, S.V. Sree, R. Ribeiro, G. Krishnamurthi, R.T. Marinho, J. Sanches, J.S. Suri, Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm, Med. Phys. 39 (7) (2012) 4255–4264.
[57]
U.R. Acharya, S.V. Sree, M.M.R. Krishnan, F. Molinari, R. Garberoglio, J.S. Suri, Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems, Ultrasonics 52 (4) (2012) 508–520.
[58]
U.R. Acharya, O. Faust, S.V. Sree, F. Molinari, R. Garberoglio, J. Suri, Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms, Technol. Cancer Res. Treat. 10 (4) (2011) 371–380.
[59]
A. Murgia, A. Balestrieri, P. Crivelli, J.S. Suri, M. Conti, F. Cademartiri, L. Saba, Therapy, Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis, Cardiovasc. Diagn. Ther. 10 (6) (2020) 2005.
[60]
U.R. Acharya, S.V. Sree, M.M.R. Krishnan, N. Krishnananda, S. Ranjan, P. Umesh, J.S. Suri, Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images, Comput. Methods Progr. Biomed. 112 (3) (2013) 624–632.
[61]
G. Pareek, U.R. Acharya, S.V. Sree, G. Swapna, R. Yantri, R.J. Martis, L. Saba, G. Krishnamurthi, G. Mallarini, A. El-Baz, Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images, Technol. Cancer Res. Treat. 12 (6) (2013) 545–557.
[62]
U.R. Acharya, S.V. Sree, S. Kulshreshtha, F. Molinari, J.E.W. Koh, L. Saba, J.S. Suri, GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization, Technol. Cancer Res. Treat. 13 (6) (2014) 529–539.
[63]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, Exploring the color feature power for psoriasis risk stratification and classification: a data mining paradigm, Comput. Biol. Med. 65 (2015) 54–68.
[64]
V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind, Comput. Methods Progr. Biomed. 126 (2016) 98–109.
[65]
U.R. Acharya, O. Faust, S.V. Sree, F. Molinari, L. Saba, A. Nicolaides, J.S. Suri, measurement, An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans, IEEE Trans. Instrum. Meas. 61 (4) (2011) 1045–1053.
[66]
T. Araki, P.K. Jain, H.S. Suri, N.D. Londhe, N. Ikeda, A. El-Baz, V.K. Shrivastava, L. Saba, A. Nicolaides, S. Shafique, Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm, Comput. Biol. Med. 80 (2017) 77–96.
[67]
U.R. Acharya, O. Faust, A. Alvin, G. Krishnamurthi, J.C. Seabra, J. Sanches, J.S. Suri, Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization, Comput. Methods Progr. Biomed. 110 (1) (2013) 66–75.
[68]
J.S. Suri, Imaging Based Symptomatic Classification and Cardiovascular Stroke Risk Score Estimation, Google Patents, 2011.
[69]
A.D. Jamthikar, D. Gupta, L.E. Mantella, L. Saba, J.R. Laird, A.M. Johri, J.S. Suri, Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study, Int. J. Cardiovasc. Imag. 37 (4) (2021) 1171–1187.
[70]
A.M. Johri, L.E. Mantella, A.D. Jamthikar, L. Saba, J.R. Laird, J.S. Suri, Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization, Int. J. Cardiovasc. Imag. 37(11): (2021) 3145–3156,.
[71]
C.-C. Wu, W.-D. Hsu, Y.-C. Wang, W.-M. Kung, I.S. Tzeng, C.-W. Huang, C.-Y. Huang, Y.-C. Li, An innovative scoring system for predicting major adverse cardiac events in patients with chest pain based on machine learning, IEEE Access 8 (2020) 124076–124083.
[72]
I.A. Kakadiaris, M. Vrigkas, A.A. Yen, T. Kuznetsova, M. Budoff, M. Naghavi, Machine learning outperforms ACC/AHA CVD risk calculator in MESA, J. Am. Heart Assoc. 7 (22) (2018) e009476.
[73]
C.Y. Cheung, D. Xu, C.Y. Cheng, C. Sabanayagam, Y.C. Tham, M. Yu, T.H. Rim, C.Y. Chai, B. Gopinath, P. Mitchell, R. Poulton, T.E. Moffitt, A. Caspi, J.C. Yam, C.C. Tham, J.B. Jonas, Y.X. Wang, S.J. Song, L.M. Burrell, O. Farouque, L.J. Li, G. Tan, D.S.W. Ting, W. Hsu, M.L. Lee, T.Y. Wong, A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre, Nat Biomed Eng 5 (6) (2021) 498–508.
[74]
M.J. Emaus, I. Isgum, S.G.M. van Velzen, H. van den Bongard, S.A.M. Gernaat, N. Lessmann, M.G.A. Sattler, A.J. Teske, J. Penninkhof, H. Meijer, J.P. Pignol, H.M. Verkooijen, g. Bragatston study, Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer, BMJ Open 9 (7) (2019) e028752.
[75]
R. Nakanishi, P.J. Slomka, R. Rios, J. Betancur, M.J. Blaha, K. Nasir, M.D. Miedema, J.A. Rumberger, H. Gransar, L.J. Shaw, Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths, Cardiovascular Imaging 14 (3) (2021) 615–625.
[76]
T. Pattarabanjird, C. Cress, A. Nguyen, A. Taylor, S. Bekiranov, C. McNamara, A machine learning model utilizing a novel SNP shows enhanced prediction of coronary artery disease severity, Genes 11 (12) (2020) 1446.
[77]
F. Sanchez-Cabo, X. Rossello, V. Fuster, F. Benito, J.P. Manzano, J.C. Silla, J.M. Fernandez-Alvira, B. Oliva, L. Fernandez-Friera, B. Lopez-Melgar, J.M. Mendiguren, J. Sanz, J.M. Ordovas, V. Andres, A. Fernandez-Ortiz, H. Bueno, B. Ibanez, J.M. Garcia-Ruiz, E. Lara-Pezzi, Machine learning improves cardiovascular risk definition for young, asymptomatic individuals, J. Am. Coll. Cardiol. 76 (14) (2020) 1674–1685.
[78]
L.B. van den Oever, L. Cornelissen, M. Vonder, C. Xia, J.N. van Bolhuis, R. Vliegenthart, R.N. Veldhuis, G.H. de Bock, M. Oudkerk, P.M. van Ooijen, Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium, Eur. J. Radiol. 129 (2020) 109114.
[79]
A.K. Wennstig, H. Garmo, U. Isacsson, G. Gagliardi, N. Rintela, B. Lagerqvist, L. Holmberg, C. Blomqvist, M. Sund, G. Nilsson, The relationship between radiation doses to coronary arteries and location of coronary stenosis requiring intervention in breast cancer survivors, Radiat. Oncol. 14 (1) (2019) 40.
[80]
A.C. Dimopoulos, M. Nikolaidou, F.F. Caballero, W. Engchuan, A. Sanchez-Niubo, H. Arndt, J.L. Ayuso-Mateos, J.M. Haro, S. Chatterji, E.N. Georgousopoulou, C. Pitsavos, D.B. Panagiotakos, Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk, BMC Med. Res. Methodol. 18 (1) (2018) 179.
[81]
G. Joo, Y. Song, H. Im, J. Park, Clinical implication of machine learning in predicting the occurrence of cardiovascular disease using big data (Nationwide Cohort Data in Korea), IEEE Access 8 (2020) 157643–157653.
[82]
J.O.R. Kim, Y.S. Jeong, J.H. Kim, J.W. Lee, D. Park, H.S. Kim, Machine learning-based cardiovascular disease prediction model: a cohort study on the Korean National health insurance service health screening database, Diagnostics 11 (6) (2021).
[83]
D. Panaretos, E. Koloverou, A.C. Dimopoulos, G.M. Kouli, M. Vamvakari, G. Tzavelas, C. Pitsavos, D.B. Panagiotakos, A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002-2012): the ATTICA study, Br. J. Nutr. 120 (3) (2018) 326–334.
[84]
X. Su, Y. Xu, Z. Tan, X. Wang, P. Yang, Y. Su, Y. Jiang, S. Qin, L. Shang, Prediction for cardiovascular diseases based on laboratory data: an analysis of random forest model, J. Clin. Lab. Anal. 34 (9) (2020) e23421.
[85]
S.F. Weng, J. Reps, J. Kai, J.M. Garibaldi, N. Qureshi, Can machine-learning improve cardiovascular risk prediction using routine clinical data?, PLoS One 12 (4) (2017) e0174944.
[86]
L. Yang, H. Wu, X. Jin, P. Zheng, S. Hu, X. Xu, W. Yu, J. Yan, Study of cardiovascular disease prediction model based on random forest in eastern China, Sci. Rep. 10 (1) (2020) 1–8.
[87]
S. Sajeev, S. Champion, A. Beleigoli, D. Chew, R.L. Reed, D.J. Magliano, J.E. Shaw, R.L. Milne, S. Appleton, T.K. Gill, A. Maeder, Predicting Australian adults at high risk of cardiovascular disease mortality using standard risk factors and machine learning, Int. J. Environ. Res. Publ. Health 18 (6) (2021).
[88]
P. Unnikrishnan, D.K. Kumar, S. Poosapadi Arjunan, H. Kumar, P. Mitchell, R. Kawasaki, Development of health parameter model for risk prediction of CVD using SVM, Comput Math Methods Med, 2016 (2016) 3016245.
[89]
K. Zarkogianni, M. Athanasiou, A.C. Thanopoulou, Comparison of machine learning approaches toward assessing the risk of developing cardiovascular disease as a long-term diabetes complication, IEEE J Biomed Health Inform 22 (5) (2018) 1637–1647.
[90]
A. Kenne Malaha, J. Magne, L. Jarlan, K. Mansour, M. Ait-Ouatet, S. Galinat, M.P. Teissier, P. Lacroix, I. Desormais, V. Aboyans, Vascular ultrasound for cardiovascular risk stratification in asymptomatic patients with type-2 diabetes, Prim Care Diabetes 15 (4) (2021) 726–732.
[91]
A.D. Jamthikar, D. Gupta, A.M. Johri, L.E. Mantella, L. Saba, R. Kolluri, A.M. Sharma, V. Viswanathan, A. Nicolaides, J.S. Suri, Low-cost office-based cardiovascular risk stratification using machine learning and focused carotid ultrasound in an asian-Indian cohort, J. Med. Syst. 44 (12) (2020) 208.
[92]
H. Chao, H. Shan, F. Homayounieh, R. Singh, R.D. Khera, H. Guo, T. Su, G. Wang, M.K. Kalra, P. Yan, Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography, Nat. Commun. 12 (1) (2021) 2963.
[93]
Z. Huang, W. Dong, H. Duan, J. Liu, A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 65 (5) (2017) 956–968.
[94]
A. Jamthikar, D. Gupta, E. Cuadrado-Godia, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, Ultrasound-based stroke/cardiovascular risk stratification using Framingham risk score and ASCVD risk score based on “integrated vascular age” instead of “chronological age”: a multi-ethnic study of asian Indian, Caucasian, and Japanese cohorts, Cardiovasc. Diagn. Ther. 10 (4) (2020) 939.
[95]
A.M. Johri, C.M. Calnan, M.F. Matangi, J. MacHaalany, M.-F. Hétu, Focused vascular ultrasound for the assessment of atherosclerosis: a proof-of-concept study, J. Am. Soc. Echocardiogr. 29 (9) (2016) 842–849.
[96]
H.T. Jørstad, E.B. Colkesen, S.M. Boekholdt, J.G. Tijssen, N.J. Wareham, K.-T. Khaw, R.J. Peters, Estimated 10-year cardiovascular mortality seriously underestimates overall cardiovascular risk, Heart 102 (1) (2016) 63–68.
[97]
N.N. Khanna, A.D. Jamthikar, D. Gupta, A. Nicolaides, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A. Protogerou, P.P. Sfikakis, G.D. Kitas, V. Viswanathan, J.S. Suri, Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: a diabetic study, Comput. Biol. Med. 105 (2019) 125–143.
[98]
V. Kotsis, A.D. Jamthikar, T. Araki, D. Gupta, J.R. Laird, A.A. Giannopoulos, L. Saba, H.S. Suri, S. Mavrogeni, G.D. Kitas, K. Viskovic, N.N. Khanna, A. Gupta, A. Nicolaides, J.S. Suri, Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients, Diabetes Res. Clin. Pract. 143 (2018) 322–331.
[99]
A. Puvvula, A.D. Jamthikar, D. Gupta, N.N. Khanna, M. Porcu, L. Saba, K. Viskovic, J.N. Ajuluchukwu, A. Gupta, S. Mavrogeni, Morphological carotid plaque area is associated with glomerular filtration rate: a study of south asian indian patients with diabetes and chronic kidney disease, Angiology 71 (6) (2020) 520–535.
[100]
J.H. Stein, C.E. Korcarz, R.T. Hurst, E. Lonn, C.B. Kendall, E.R. Mohler, S.S. Najjar, C.M. Rembold, W.S. Post, Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine, J. Am. Soc. Echocardiogr. 21 (2) (2008) 93–111.
[101]
V. Viswanathan, A.D. Jamthikar, D. Gupta, A. Puvvula, N.N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, A. Sharma, P. Kancharana, D.P. Misra, V. Agarwal, G.D. Kitas, A. Nicolaides, J.S. Suri, Does the carotid bulb offer a better 10-year CVD/stroke risk assessment compared to the common carotid artery? A 1516 ultrasound scan study, Angiology 71 (10) (2020) 920–933.
[102]
E. Cuadrado-Godia, M. Maniruzzaman, T. Araki, A. Puvvula, M. Jahanur Rahman, L. Saba, H.S. Suri, A. Gupta, S.K. Banchhor, J.S. Teji, T. Omerzu, N.N. Khanna, J.R. Laird, A. Nicolaides, S. Mavrogeni, G.D. Kitas, J.S. Suri, A. Fellow, Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort, Comput. Biol. Med. 101 (2018) 128–145.
[103]
Z. Huang, W. Dong, H. Duan, J. Liu, A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records, IEEE Trans. Biomed. Eng. 65 (5) (2018) 956–968.
[104]
J.H. Stein, C.E. Korcarz, R.T. Hurst, E. Lonn, C.B. Kendall, E.R. Mohler, S.S. Najjar, C.M. Rembold, W.S. Post, F. American, Society of echocardiography carotid intima-media thickness task, Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21 (2) (2008) 93–111. quiz 189-90.
[105]
E. Cuadrado-Godia, A.D. Jamthikar, D. Gupta, N.N. Khanna, T. Araki, M. Maniruzzaman, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H.S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J.R. Laird, A. Protogerou, P. Sfikakis, G.D. Kitas, V. Viswanathan, J.S. Suri, Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: logistic regression approach, Comput. Biol. Med. 108 (2019) 182–195.
[106]
A.M. Johri, C.M. Calnan, M.F. Matangi, J. MacHaalany, M.F. Hetu, Focused vascular ultrasound for the assessment of atherosclerosis: a proof-of-concept study, J. Am. Soc. Echocardiogr. 29 (9) (2016) 842–849.
[107]
H.T. Jorstad, E.B. Colkesen, S.M. Boekholdt, J.G. Tijssen, N.J. Wareham, K.T. Khaw, R.J. Peters, Estimated 10-year cardiovascular mortality seriously underestimates overall cardiovascular risk, Heart 102 (1) (2016) 63–68.
[108]
J. Suri, S. Agarwal, S.K. Gupta, A. Puvvula, K. Viskovic, N. Suri, A. Alizad, A. El-Baz, L. Saba, M. Fatemi, Systematic review of artificial intelligence in acute respiratory distress syndrome for COVID-19 lung patients: a Biomedical imaging perspective, IEEE Journal of Biomedical Health Informatics 25(11): (2021 Nov) 4128–4139,.
[109]
J.S. Suri, A. Puvvula, M. Majhail, M. Biswas, A.D. Jamthikar, L. Saba, G. Faa, I.M. Singh, R. Oberleitner, M. Turk, S. Srivastava, P.S. Chadha, H.S. Suri, A.M. Johri, V. Nambi, J.M. Sanches, N.N. Khanna, K. Viskovic, S. Mavrogeni, J.R. Laird, A. Bit, G. Pareek, M. Miner, A. Balestrieri, P.P. Sfikakis, G. Tsoulfas, A. Protogerou, D.P. Misra, V. Agarwal, G.D. Kitas, R. Kolluri, J. Teji, M. Porcu, M. Al-Maini, A. Agbakoba, M. Sockalingam, A. Sexena, A. Nicolaides, A. Sharma, V. Rathore, V. Viswanathan, S. Naidu, D.L. Bhatt, Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence, Rev. Cardiovasc. Med. 21 (4) (2020) 541–560.
[110]
P. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, J.S. Suri, Speckle reduction in medical ultrasound images using an unbiased non-local means method, Biomedical Signal Processing and Control, 28, Elsevier, 2016, pp. 1–8.
[111]
J.S. Suri, D. Kumar, Medical Image Enhancement System, Google Patents, 2008.
[112]
L. Saba, S.K. Banchhor, T. Araki, H.S. Suri, N.D. Londhe, J.R. Laird, K. Viskovic, J.S. Suri, Intra-and inter-operator reproducibility analysis of automated cloud-based carotid intima media thickness ultrasound measurement, J. Clin. Diagn. Res. 12 (2) (2018).
[113]
L. Saba, J.C. Than, N.M. Noor, O.M. Rijal, R.M. Kassim, A. Yunus, C.R. Ng, J.S. Suri, Inter-observer variability analysis of automatic lung delineation in normal and disease patients, J. Med. Syst. 40 (6) (2016) 142.
[114]
A. Jamthikar, D. Gupta, L. Saba, N.N. Khanna, T. Araki, K. Viskovic, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, V. Viswanathan, A. Sharma, A. Nicolaides, G.D. Kitas, J.S. Suri, Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models, Cardiovasc. Diagn. Ther. 10 (4) (2020) 919–938.
[115]
S. Benjamens, P. Dhunnoo, B. Meskó, The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database, NPJ digital medicine 3 (1) (2020) 1–8.
[116]
P.F. Whiting, A.W. Rutjes, M.E. Westwood, S. Mallett, J.J. Deeks, J.B. Reitsma, M.M. Leeflang, J.A. Sterne, P.M. Bossuyt, Q.- Group*, QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies, Ann. Intern. Med. 155 (8) (2011) 529–536.
[117]
L. Saba, R. Sanfilippo, S. Sannia, M. Anzidei, R. Montisci, G. Mallarini, J.S. Suri, Association between carotid artery plaque volume, composition, and ulceration: a retrospective assessment with MDCT, Am. J. Roentgenol. 199 (1) (2012) 151–156.

Index Terms

  1. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Computers in Biology and Medicine
        Computers in Biology and Medicine  Volume 142, Issue C
        Mar 2022
        707 pages

        Publisher

        Pergamon Press, Inc.

        United States

        Publication History

        Published: 01 March 2022

        Author Tags

        1. Risk prediction
        2. Coronary artery disease
        3. Carotid ultrasound
        4. Artificial intelligence
        5. Bias
        6. Gold standard
        7. And unseen data

        Qualifiers

        • Review-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 13 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media