Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Attention-based generative adversarial network in medical imaging: : A narrative review

Published: 01 October 2022 Publication History

Abstract

As a popular probabilistic generative model, generative adversarial network (GAN) has been successfully used not only in natural image processing, but also in medical image analysis and computer-aided diagnosis. Despite the various advantages, the applications of GAN in medical image analysis face new challenges. The introduction of attention mechanisms, which resemble the human visual system that focuses on the task-related local image area for certain information extraction, has drawn increasing interest. Recently proposed transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to summarize the applications of using transformer-based GAN for medical image analysis. We reviewed recent advances in techniques combining various attention modules with different adversarial training schemes, and their applications in medical segmentation, synthesis and detection. Several recent studies have shown that attention modules can be effectively incorporated into a GAN model in detecting lesion areas and extracting diagnosis-related feature information precisely, thus providing a useful tool for medical image processing and diagnosis. This review indicates that research on the medical imaging analysis of GAN and attention mechanisms is still at an early stage despite the great potential. We highlight the attention-based generative adversarial network is an efficient and promising computational model advancing future research and applications in medical image analysis.

Highlights

A systematic review on medical image analysis based on GAN with attention mechanism is provided.
The benchmark models of GAN and its variation are introduced.
The working principle of some popular attention mechanisms are analyzed.
Phenomena of challenges, and future reasearch are discussed.

References

[1]
Perarnau, Guim; Joost van de Weijer; Raducanu, Bogdan; Álvarez, Jose M. (2016): Invertible Conditional GANs for image editing. URL: https://doi.org/10.48550/arXiv.1611.06355.
[2]
Peng Liu, Jun Li, Lizhe Wang, Guojin He, A Review on Remote Sensing Data Fusion with Generative Adversarial Networks (GAN), 2021,. TechRxiv. Preprint. URL:.
[3]
J. Tan, X. Liao, J. Liu, Y. Cao, H. Jiang, channel attention image steganography with generative adversarial networks, IEEE Transc. Netw. Sci. Eng. 9 (2) (1 March-April 2022) 888–903,.
[4]
Xin Liao, Jing Peng, Yun Cao, GIFMarking, The robust watermarking for animated GIF based deep learning, J. Vis. Commun. Image Represent. 79 (2021),. ISSN 1047-3203.
[5]
Peng Liu, Lizhe Wang, Rajiv Ranjan, et al., A survey on active deep learning: from model-driven to data-driven, ACM Comput. Surv. (CSUR) (2021) https://doi.org/10.1145/3510414.
[6]
C. Ge, I.Y.H. Gu, A.S. Jakola, J. Yang Enlarged, Training dataset by pairwise GANs for molecular-based brain tumor classification, [FREE Full text] [doi: IEEE Access 8 (2020) 22560–22570,. 2020.2969805.
[7]
Bo Zhan, Jianghong Xiao, Chongyang Cao, Xingchen Peng, Chen Zu, Jiliu Zhou, Yan Wang, Multi-constraint generative adversarial network for dose prediction in radiotherapy, FREE Full text Med. Image Anal. 7 (2022 April),. [Medline: 34990905].
[8]
H. Ye, Q. Zhu, Y. Yao, et al., Pairwise feature-based generative adversarial network for incomplete multi-modal Alzheimer's disease diagnosis, Vis. Comput. (2022 Jan 10),. FREE Full text][.
[9]
Y. Chen, X.H. Yang, Z. Wei, A.A. Heidari, N. Zheng, Z. Li, H. Chen, H. Hu, Q. Zhou, Q. Guan, Generative adversarial networks in medical image augmentation: a review, Comput. Biol. Med. 144 (2022 May),. Epub 2022 Mar 5. PMID: 35276550.
[10]
Q. Guan, Y. Chen, Z. Wei, A.A. Heidari, H. Hu, X.H. Yang, J. Zheng, Q. Zhou, H. Chen, F. Chen, Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN, Comput. Biol. Med. 145 (2022 Jun),. Epub 2022 Mar 30. PMID: 35421795.
[11]
J.M. Wolterink, T. Leiner, M.A. Viergever, I. Išgum, Generative adversarial networks for noise reduction in low-dose CT, FREE Full text IEEE Trans. Med. Imag. 36 (12) (2017 Dec) 2536–2545,. [Medline: 28574346].
[12]
Y. Ko, S. Moon, J. Baek, H. Shim, Rigid and non-rigid motion artifact reduction in X-ray CT using attention module, [FREE Full text][doi: Med. Image Anal. 67 (2021 Jan),. 101883][Medline: 33166775].
[13]
G. Wang, X. Hu, Low-dose CT denoising using a Progressive Wasserstein generative adversarial network, Comput. Biol. Med. 135 (2021 Aug),. Epub 2021 Jul 3. PMID: 34246157.
[14]
G. Yang, S. Yu, H. Dong, et al., DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction, [FREE Full text][doi: IEEE Trans. Med. Imag. 37 (6) (2018 Jun) 1310–1321,. [Medline: 29870361].
[15]
Jue Jiang, Yu-Chi Hu, Neelam Tyagi, Pengpeng Zhang, Andreas Rimner, Gig S. Mageras, Joseph O Deasy, Harini Veeraraghavan, Tumor-aware, adversarial domain adaptation from ct to mri for lung cancer segmentation, Med. Imag. Comput. Comput. Assist. Interv. 11071 (2018 Sep) 777–785,. [Medline: 30294726].
[16]
H. Asano, E. Hirakawa, H. Hayashi, K. Hamada, Y. Asayama, M. Oohashi, A. Uchiyama, T. Higashino, A method for improving semantic segmentation using thermographic images in infants, [FREE Full text] [ BMC Med. Imag. 22 (1) (2022 Jan 3) 1,. [Medline: 34979965].
[17]
L. Zhu, Q. He, Y. Huang, Z. Zhang, J. Zeng, L. Lu, W. Kong, F. Zhou, DualMMP-GAN: dual-scale multi-modality perceptual generative adversarial network for medical image segmentation, Comput. Biol. Med. 144 (2022 May),.
[18]
S. Xun, D. Li, H. Zhu, M. Chen, J. Wang, J. Li, M. Chen, B. Wu, H. Zhang, X. Chai, Z. Jiang, Y. Zhang, P. Huang, Generative adversarial networks in medical image segmentation: a review, Comput. Biol. Med. 140 (2021 Nov 25),. Epub ahead of print. PMID: 34864584.
[19]
Tuysuzoglu A, Tan J, Eissa K, Kiraly A P, Diallo M, Kamen A. Deep adversarial context-aware landmark detection for ultrasound imaging. In: Frangi A, Schnabel J, Davatzikos C, Alberola-López C, Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol vol. 11073. Springer, Cham. [FREE Full text] [
[20]
J. Ren, I. Hacihaliloglu, E.A. Singer, D.J. Foran, X. Qi, Adversarial domain adaptation for classification of prostate histopathology whole-slide images, Med. Imag. Comput. Comput. Assist. Interv. 11071 (2018 Sep) 201–209,. [Medline: 30465047].
[21]
J. Zhao, X. Zhou, G. Shi, et al., Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification, [FREE Full text] [ Appl. Intell. (2022 Jan 13) 1–15,. [Medline: 35039715].
[22]
X. Gao, F. Shi, D. Shen, M. Liu, Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in alzheimer's disease, IEEE J. Biomed. Health Inform. 26 (1) (2022 Jan) 36–43,. [Medline: 34280112].
[23]
S. Kazeminia, C. Baur, A. Kuijper, et al., GANs for medical image analysis, Artif. Intell. Med. 109 (2020 Sep),. [FREE Full text] [doi:.
[24]
Peng Liu, Jun Li, Lizhe Wang, et al., Remote Sensing Data Fusion With Generative Adversarial Networks: State-of-the-art methods and future research directions, IEEE Geosci. Rem. Sens. Mag. (2022) 295–328.
[25]
Bingze Song, Peng Liu, Jun Li, et al., MLFF-GAN: A Multi-level Feature Fusion with GAN for Spatiotemporal Remote Sensing Images, IEEE Trans. Geosci. Rem. Sens. (2022).
[26]
H. Zhang, I. Goodfellow, Dimitris Metaxas, Augustus Odena, Self-attention generative adversarial networks, Proc. 36th Int. Conf. Machine Learn. PMLR 97 (2019) 7354–7363,.
[27]
Long Beach, CA, USA Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need. 31st Conference on Neural Information Processing Systems (NIPS 2017), 04 2017 Dec, pp. 6000–6010,. FREE Full text.
[28]
S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni, A. Mukhopadhyay, GANs for medical image analysis, Artif. Intell. Med. 109 (2020) 1–40,.
[29]
X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: a review, Med. Image Anal. 58 (2019),.
[30]
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial nets. NIPS'14, Proc. 27th Int. Conf. Neural Inform. Process. Syst. 2 (2014 Dec) 2672–2680,. [FREE Full text] [.
[31]
New York, NY P. Isola, J. Zhu, T. Zhou, A.A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, 2017 Nov 9 in: Presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, 2017, pp. 5967–5976,. URL: https://ieeexplore.ieee.org/abstract/document/8100115.
[32]
Y. Almalioglu, K. Bengisu Ozyoruk, A. Gokce, K. Incetan, G. Irem Gokceler, M. Ali Simsek, K. Ararat, R.J. Chen, N.J. Durr, F. Mahmood, M. Turan, EndoL2H: deep super-resolution for capsule endoscopy, [FREE Full text IEEE Trans. Med. Imag. 39 (12) (2020 Dec) 4297–4309,. [Medline: 32795966].
[33]
Z. Yu, Q. Xiang, J. Meng, C. Kou, Q. Ren, Y. Lu, Retinal image synthesis from multiple-landmarks input with generative adversarial networks, Biomed. Eng. Online 18 (1) (2019 May 21) 62,. [Medline: 31113438].
[34]
X. Yi, P. Babyn, Sharpness-Aware low-dose CT denoising using conditional generative adversarial network, J. Digit. Imag. 31 (5) (2018 Oct) 655–669,. [Medline: 29464432].
[35]
D. Ravì, A.B. Szczotka, D.I. Shakir, S.P. Pereira, T. Vercauteren, Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy, Med. Image Anal. 53 (2018 Apr) 123–131,.
[36]
J.Y. Zhu, T. Park, P. Isola, et al., Unpaired image-to-image translation using cycle-consistent adversarial networks, 2017 Dec IEEE Int. Conf. Comput. Vis. (2017) 2242–2251,. [FREE Full text.
[37]
J.M. Wolterink, A.M. Dinkla, M.H.F. Savenije, P.R. Seevinck, C.A.T. van den Berg, I. Išgum, Deep MR to CT synthesis using unpaired data, in: S. Tsaftaris, A. Gooya, A. Frangi, J. Prince (Eds.), Simulation and Synthesis in Medical Imaging. SASHIMI 2017, in: Lecture Notes in Computer Science, vol. 10557, Springer, Cham, 2017, pp. 14–23,. [FREE Full text][.
[38]
Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T.K. Moyo, M.R. Savona, R.G. Abramson, B.A. Landman, SynSeg-net: synthetic segmentation without target modality ground truth, IEEE Trans. Med. Imag. (2018 Oct 17),. [PMID: 30334788].
[39]
Z. Zhang, L. Yang, Y. Zheng, Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 9242–9251,. 2018 Dec.
[40]
T. Karras, T. Aila, S. Laine, et al., Progressive Growing of GANs for Improved Quality, Stability, and Variation, 2017,. URL:.
[41]
A. Beers, J. Brown, K. Chang, J.P. Campbell, S. Ostmo, M.F. Chiang, J. Kalpathy-Cramer, High-resolution Medical Image Synthesis Using Progressively Grown Generative Adversarial Networks URL, 2018,.
[42]
Baur, C.; Albarqouni, S.; Navab, N. (2018): Generating highly realistic images of skin lesions with GANs. URL: https://doi.org/10.48550/arXiv.1809.01410.
[43]
I. Abdelhalim, M.F. Mohamed, Y.B. Mahdy, Data augmentation for skin lesion using self-attention based progressive generative adversarial network, Expert Syst. Appl. 165 (2021 Mar),. [FREE Full text] [doi:.
[44]
New York, NY C. Ledig, et al., Photo-realistic single image super-resolution using a generative adversarial network, 2017 Nov 9 in: Presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, 2017, pp. 105–114,.
[45]
Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science. 2016: 9906. Springer, Cham. [
[46]
Y. Gu, Z. Zeng, H. Chen, et al., MedSRGAN: medical images super-resolution using generative adversarial networks, Multimed. Tool. Appl. 79 (2020 Aug) 21815–21840,.
[47]
Arjovsky, M.; Chintala, S.; Bottou, L. (2017) : Wasserstein GAN URL: https://doi.org/10.48550/arXiv.1701.07875.
[48]
A. Brock, J. Donahue, K. Simonyan, Large Scale gan Training for High Fidelity Natural Image Synthesis, 2018,. ArXiv Prepr. ArXiv1809.11096.
[49]
T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2019) 4401–4410,. URL:.
[50]
C. Zhao, R. Shuai, L. Ma, W. Liu, D. Hu, M. Wu, Dermoscopy image classification based on StyleGAN and DenseNet201, IEEE Access 9 (2021) 8659–8679,.
[51]
L. Fetty, M. Bylund, P. Kuess, et al., Latent space manipulation for high-resolution medical image synthesis via the StyleGAN, ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK 30 (4) (2021) 305–314,. URL:.
[52]
Gagandeep B. Daroach, et al., High-resolution Controllable Prostatic Histology Synthesis Using StyleGAN, BIOIMAGING, 2021,. URL:.
[53]
A. Gong, X. Yao, W. Lin, Dermoscopy image classification based on StyleGANs and decision fusion, IEEE Access 8 (2020) 70640–70650,.
[54]
C. Esteban, S.L. Hyland, G. Rtsch, Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs, 2017,. URL:.
[55]
S. Tao, J. Wang, Alleviation of Gradient Exploding in GANs: Fake Can Be Real, 2019,. URL:.
[56]
T. Guo, et al., On positive-unlabeled classification in GAN, 2020 in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8382–8390,. [FREE Full text][doi:.
[57]
O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-Net: Learning where to Look for the Pancreas, 2018,. URL:.
[58]
J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, Squeeze-and-Excitation networks, IEEE Trans. Pattern Anal. Mach. Intell. 42 (8) (2020) 2011–2023,. [FREE Full text][doi: Aug.
[59]
X. Wang, R. Girshick, A. Gupta, et al., Non-local neural networks, 2018 in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803,. [FREE Full text] [doi:.
[60]
Y. Cao, J. Xu, S. Lin, F. Wei, H. Hu GCNet, Non-local networks meet squeeze-excitation networks and beyond, 2019 in: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1971–1980,. [FREE Full text] [.
[61]
T. Bu, Z. Yang, S. Jiang, G. Zhang, H. Zhang, L. Wei, 3D conditional generative adversarial network-based synthetic medical image augmentation for lung nodule detection, Int. J. Imag. Syst. Technol. 31 (2021) 670–681,.
[62]
X. Bing, W. Zhang, L. Zheng, Y. Zhang, Medical image super resolution using improved generative adversarial networks, [FREE Full text][doi: IEEE Access 7 (2019) 145030–145038,. 2019.2944862.
[63]
Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. (2018) : Self-attention generative adversarial networks URL: https://doi.org/10.48550/arXiv.1805.08318.
[64]
H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, A. Agrawal, Context encoding for semantic segmentation, 2018 in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7151–7160,. [FREE Full text] [.
[65]
Yi fan Jiang, Shi yu Chang, Zhangyang Wang. TransGAN: Two Transformers Can Make One Strong GAN, arXiv:2102.07074.
[66]
Y. Luo, et al., 3D transformer-GAN for high-quality PET reconstruction, Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021 M. Bruijne (Ed.), Lect. Notes Comput. Sci. 12906 (2021),. Springer, Cham.
[67]
J.M.J. Valanarasu, P. Oza, I. Hacihaliloglu, V.M. Patel, Medical transformer: gated axial-attention for medical image segmentation, in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, in: Lecture Notes in Computer Science, vol. 12901, Springer, 2021,. Cham URL:.
[68]
D.L. Collins, J.C. Pruessner, Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion, Neuroimage 52 (4) (2010 Oct 1) 1355–1366,. [Medline: 20441794].
[69]
M. Hajiesmaeili, B. Bagherinakhjavanlo, J. Dehmeshki, T. Ellis, Segmentation of the Hippocampus for detection of Alzheimer's disease, in: Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science in Advances in Visual Computing, 7431, 2012, pp. 42–54,.
[70]
L. Soler, H. Delingette, G. Malandain, Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery, Comput. Aided Surg. 6 (3) (2001, Jan) 131–142,. [Medline: 11747131].
[71]
M. Rahman, N. Alpaslan, P. Bhattacharya, Developing a retrieval based diagnostic aid for automated melanoma recognition of dermoscopic images, in: Proc. IEEE Appl. Imag. Pattern Recognit. Workshop (AIPR), 2016 Oct, pp. 1–7,.
[72]
Yuan, Y. (2017): Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. URL: https://arxiv.org/abs/1703.05165.
[73]
E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, [FREE Full text] [doi: IEEE Trans. Pattern Anal. Mach. Intell. 39 (4) (2017 Apr) 640–651,. 2572683] [PMID: 27244717].
[74]
O. Ronneberger, P. Fischer, T. Brox, U-Net, Convolutional networks for biomedical image segmentation, in: Proc. 18th Int. Conf. Medical Image Computing and Computer-Assisted Intervention MICCAI, 9351, 2015, pp. 234–241,. Munich, Germany.
[75]
Y. Wang, S. Wang, J. Chen, C. Wu, Whole mammographic mass segmentation using attention mechanism and multiscale pooling adversarial network, J. Med. Imaging 7 (5) (2020 Sep),. [Medline: 33102621].
[76]
Md Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Vivek Kumar Singh, Syeda Furruka Banu, U. Forhad, H. Chowdhury, Kabir ahmed choudhury, sylvie chambon, petia radeva, domenec puig, mohamed abdel-nasser. SLSNet: skin lesion segmentation using a lightweight generative adversarial network, Expert Syst. Appl. 183 (2021 Nov),.
[77]
V.K. Singh, et al., FCA-Net, Adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention, 2019 Sep IEEE Access 7 (2019) 130552–130565,.
[78]
Z. Wei, H. Song, L. Chen, Q. Li, G. Han, Attention-Based denseUnet network with adversarial training for skin lesion segmentation, IEEE Access 7 (2019 Sep) 136616–136629,.
[79]
Yukun Zhou, Zailiang Chen, Hailan Shen, Xianxian Zheng, Rongchang Zhao, Xuanchu Duan, A refined equilibrium generative adversarial network for retinal vessel segmentation, Neurocomputing 437 (2021 May) 118–130,. [FREE Full text][doi:.
[80]
H. Deng, Y. Zhang, R. Li, C. Hu, Z. Feng, H. Li, Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentation, Tsinghua Sci. Technol. 27 (1) (2022 Feb) 68–78,. [FREE Full text] [doi:.
[81]
C. Su, R. Huang, C. Liu, T. Yin, B. Du, M.R. Prostate, Image segmentation with self-attention adversarial training based on Wasserstein distance, [FREE Full text] [doi: IEEE Access 7 (2019) 184276–184284,. 2019.2959611.
[82]
J. Chen, et al., JAS-GAN, Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets, IEEE J. Biomed. Health Inform. 26 (1) (2022 Jan) 103–114,. [FREE Full text][doi:.
[83]
Ma Yuan, Kewen Liu, Hongxia Xiong, Panpan Fang, Xiaojun Li, Yalei Chen, Zejun Yan, Zhijun Zhou, Chaoyang Liu, Medical image super-resolution using a relativistic average generative adversarial network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 992 (2021 Mar),.
[84]
W. Du, H. Chen, P. Liao, H. Yang, G. Wang, Y. Zhang, Visual attention network for low-dose CT, IEEE Signal Process. Lett. 26 (8) (2019 Aug) 1152–1156,. [FREE Full text] [doi:.
[85]
Mohammad Hamghalam, Tianfu Wang, Baiying Lei, High tissue contrast image synthesis via multistage attention-GAN: application to segmenting brain MR scans, Neural Network. 132 (2020) 43–52,.
[86]
B. Ma, Y. Zhao, Y. Yang, X. Zhang, X. Dong, D. Zeng, S. Ma, S. Li, MRI image synthesis with dual discriminator adversarial learning and difficulty-aware attention mechanism for hippocampal subfields segmentation, Comput. Med. Imag. Graph. 86 (2020 Dec),. [Medline: 33130416].
[87]
Y. Almalioglu, et al., EndoL2H: deep super-resolution for capsule endoscopy, IEEE Trans. Med. Imag. 39 (12) (2020 Dec) 4297–4309,.
[88]
Y. Zhou, B. Wang, X. He, S. Cui, L. Shao, D.R.- Gan, Conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images, IEEE J. Biomed. Health Inform. 26 (1) (2022 Jan) 56–66,. [Medline: 33332280].
[89]
Y. Liu, Y. Lei, T. Wang, Y. Fu, X. Tang, W.J. Curran, T. Liu, P. Patel, X. Yang, CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy, Med. Phys. 47 (6) (2020 Jun) 2472–2483,. [Medline: 32141618].
[90]
H. Sun, R. Fan, C. Li, et al., Imaging study of pseudo-CT synthesized from cone-beam CT based on 3D CycleGAN in radiotherapy, Front. Oncol. 11 (2021 Mar),. [Medline: 33777746].
[91]
Y. Gu, Z. Zeng, H. Chen, et al., MedSRGAN: medical images super-resolution using generative adversarial networks, Multimed. Tool. Appl. 79 (2020) 21815–21840,.
[92]
H. Zhou, X. Liu, H. Wang, et al., The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network, Quant. Imag. Med. Surg. 12 (1) (2022 Jan) 28–42,.
[93]
F. Shahidi, Breast cancer histopathology image super-resolution using wide-attention GAN with improved Wasserstein gradient penalty and perceptual loss, IEEE Access 9 (2021 Feb) 32795–32809,.
[94]
Y. Li, H. Huang, L. Zhang, G. Wang, H. Zhang, W. Zhou, Super-resolution and self-attention with generative adversarial network for improving malignancy characterization of hepatocellular carcinoma, in: IEEE 17th International Symposium on Biomedical Imaging, ISBI), 2020, pp. 1556–1560,. 2020 May.
[95]
H. Lan, Alzheimer Disease Neuroimaging Initiative, Toga AW, Sepehrband F. Three-dimensional self-attention conditional GAN with spectral normalization for multimodal neuroimaging synthesis, Magn. Reson. Med. 86 (3) (2021 Sep) 1718–1733,. [Medline: 33961321].
[96]
Z. Zhou, Y. Wang, Y. Guo, X. Jiang, Y. Qi, Ultrafast plane wave imaging with line-scan-quality using an ultrasound-transfer generative adversarial network, IEEE J. Biomed. Health Inform. 24 (4) (2020) 943–956,. April.
[97]
E.R. Kops, H. Herzog, Alternative methods for attenuation correction for pet images in mr-pet scanners, 2007 IEEE Nucl. Sci. Symp. Conf. Rec. 6 (2007) 4327–4330,.
[98]
A. Johansson, M. Karlsson, T. Nyholm, CT substitute derived from MRI sequences with ultrashort echo time, Med. Phys. 38 (5) (2011 May) 2708–2714,. [Medline: 21776807].
[99]
X. Han, MR-based synthetic CT generation using a deep convolutional neural network method, Med. Phys. 44 (4) (2017 Apr) 1408–1419,. [Medline: 28192624].
[100]
D. Nie, X. Cao, Y. Gao, L. Wang, D. Shen, Estimating CT image from MRI data using 3D fully convolutional networks, 2016; 2016 Deep Learn Data Label Med. Appl. (2016) 170–178,. [Medline: 29075680].
[101]
A. Abu-Srhan, I. Almallahi, M.A.M. Abushariah, W. Mahafza, O.S. Al-Kadi, Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis, Comput. Biol. Med. 136 (2021 Sep),. [Medline: 34449305].
[102]
H. Emami, M. Dong, C.K. Glide-Hurst, Attention-guided generative adversarial network to address atypical anatomy in synthetic CT generation, 2020). 2020 Aug in: IEEE 21st Int Conf Inf Reuse Integr Data Sci, vol. 2020, 2020, pp. 188–193,. [Medline: 34094039].
[103]
Pritam Sarkar, Etemad Ali, CardioGAN: Attentive Generative Adversarial Network with Dual Discriminators for Synthesis of ECG from PPG, 2021,.
[104]
W. Wei, E. Poirion, B. Bodini, M. Tonietto, S. Durrleman, O. Colliot, B. Stankoff, N. Ayache, Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis, Neuroimage 223 (2020 Dec),. [Medline: 32889117].
[105]
F. Milletari, N. Navab, S. Ahmadi, V-Net, Fully convolutional neural networks for volumetric medical image segmentation, 2016 Fourth in: International Conference on 3D Vision (3DV, 2016, pp. 565–571,.
[106]
O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W. Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015, in: Lecture Notes in Computer Science, vol. 9351, Springer, 2015,. Cham URL:.
[107]
Ibrahim Saad Aly Abdelhalim, Mamdouh Farouk Mohamed, Yousef Bassyouni Mahdy, Data augmentation for skin lesion using self-attention based progressive generative adversarial network, Expert Syst. Appl. 165 (2021 Mar),. [FREE Full text] [doi:.
[108]
Y. Liu, L. Meng, J. Zhong, MAGAN: mask attention generative adversarial network for liver tumor CT image synthesis, 2021 Jan 30 J. Healthc. Eng. (2021),. [Medline: 33604011].
[109]
Z. Xu, C. Qi, G. Xu, Semi-supervised attention-guided CycleGAN for data augmentation on medical images, 2019 Feb in: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019, pp. 563–568,. [FREE Full text] [.
[110]
A.A.E. Ambita, E.N.V. Boquio, P.C. Naval, COViT-GAN: vision transformer forCOVID-19 detection in CT scan imageswith self-attention GAN forDataAugmentation, in: I. Farkaš, P. Masulli, S. Otte, S. Wermter (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021, in: Lecture Notes in Computer Science, vol. 12892, Springer, 2021,. Cham URL:.
[111]
Y. Xue, J. Ye, Q. Zhou, L.R. Long, S. Antani, Z. Xue, C. Cornwell, R. Zaino, K.C. Cheng, X. Huang, Selective synthetic augmentation with HistoGAN for improved histopathology image classification, Med. Image Anal. 67 (2021 Jan),. [Medline: 33080509].
[112]
C. Ge, I.Y.-H. Gu, A.S. Jakola, J. Yang, Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification, [FREE Full text] [doi: IEEE Access 8 (2020 Jan) 22560–22570,. 2020.2969805.
[113]
J. Li, W. Shao, Z. Li, W. Li, D. Zhang, Residual attention generative adversarial networks for nuclei detection on routine colon cancer histology images, in: H.I. Suk, M. Liu, P. Yan, C. Lian (Eds.), Machine Learning in Medical Imaging. MLMI 2019, in: Lecture Notes in Computer Science, vol. 11861, Springer, 2019,. Cham URL:.
[114]
H. Xie, H. Lei, X. Zeng, Y. He, G. Chen, A. Elazab, G. Yue, J. Wang, G. Zhang, B. Lei, AMD-GAN: attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images, Neural Network. 132 (2020 Dec) 477–490,. [Medline: 33039786].
[115]
C. Han, L. Rundo, K. Murao, et al., MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction, [FREE Full text] [ BMC Bioinf. 22 (2) (2021 Apr 26) 31,. [Medline: 33902457].
[116]
L. Zhang, Z. Xiao, C. Zhou, J. Yuan, Q. He, Y. Yang, X. Liu, D. Liang, H. Zheng, W. Fan, X. Zhang, Z. Hu, Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI, [FREE Full text] [doi: Med. Phys. 49 (1) (2022 Jan) 343–356,. Medline: 34796526].
[117]
Zebin Hu, Hao Liu, Zhendong Li, Zekuan Yu, Cross-model transformer method for medical image synthesis, Complexity (2021),. Article ID 5624909, 7 pages, 2021. [FREE Full text] [.
[118]
S.B. Sandouka, Y. Bazi, N. Alajlan, Transformers and generative adversarial networks for liveness detection in multitarget fingerprint sensors, [FREE Full text] [ Sensors 21 (3) (2021 Jan 20) 699,. [Medline: 33498430].
[119]
I. Melnyk, T. Sercu, P.L. Dognin, J. Ross, Y. Mroueh, Improved Image Captioning with Adversarial Semantic Alignment, 2018,.
[120]
R. Shetty, M. Rohrbach, L.A. Hendricks, M. Fritz, B. Schiele, Speaking the same language: matching machine to human captions by adversarial training, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 4135–4144. URL: 2017 https://openaccess.thecvf.com/content_iccv_2017/html/Shetty_Speaking_the_Same_ICCV_2017_paper.html.
[121]
B. Dai, D. Lin, R. Urtasun, S. Fidler, Towards diverse and natural image descriptions via a conditional gan, 2017 in: IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2989–2998,. [FREE Full text] [doi:.
[122]
B. Jing, P. Xie, E. Xing, On the Automatic Generation of Medical Imaging Reports, 2017,.
[123]
A.M. Rush, S. Chopra, J. Weston, A Neural Attention Model for Abstractive Sentence Summarization, 2015,.
[124]
J. Ma, H. Xu, J. Jiang, X. Mei, X.P. Zhang, DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion, IEEE Trans. Image Process. (2020 Mar 10),. [Medline: 32167894].
[125]
J. Huang, Z. Le, Y. Ma, F. Fan, H. Zhang, L. Yang, MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network, IEEE Access 8 (2020 Mar) 55145–55157,. 2982016.
[126]
Jun Fu, Weisheng Li, Jiao Du, Liming Xu, DSAGAN: a generative adversarial network based on dual-stream attention mechanism for anatomical and functional image fusion, Inf. Sci. 576 (2021 Oct) 484–506,.
[127]
M.A. Mazurowski, Artificial intelligence may cause a significant disruption to the radiology workforce, J. Am. Coll. Radiol. 16 (8) (2019 Aug) 1077–1082,. Epub 2019 Apr 8. PMID: 30975611.

Cited By

View all
  • (2023)Breast tumor localization and segmentation using machine learning techniquesComputers in Biology and Medicine10.1016/j.compbiomed.2022.106443152:COnline publication date: 1-Jan-2023

Index Terms

  1. Attention-based generative adversarial network in medical imaging: A narrative review
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Computers in Biology and Medicine
            Computers in Biology and Medicine  Volume 149, Issue C
            Oct 2022
            1186 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 01 October 2022

            Author Tags

            1. Generative adversarial network (GAN)
            2. Attention
            3. Medical imaging
            4. Transformer
            5. Review

            Author Tags

            1. GAN
            2. PGGAN
            3. SRGAN
            4. MSE
            5. PSNR
            6. CNN
            7. CT
            8. MR
            9. WGAN
            10. RGAN
            11. SENet
            12. SE
            13. CGAN
            14. PET
            15. GCNet
            16. SAGAN
            17. G
            18. D

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 25 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Breast tumor localization and segmentation using machine learning techniquesComputers in Biology and Medicine10.1016/j.compbiomed.2022.106443152:COnline publication date: 1-Jan-2023

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media