Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Background selection schema on deep learning-based classification of dermatological disease

Published: 01 October 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Skin diseases are one of the most common ailments affecting humans. Artificial intelligence based on deep learning can significantly improve the efficiency of identifying skin disorders and alleviate the scarcity of medical resources. However, the distribution of background information in dermatological datasets is imbalanced, causing generalized deep learning models to perform poorly in skin disease classification. We propose a deep learning schema that combines data preprocessing, data augmentation, and residual networks to study the influence of color-based background selection on a deep model’s capacity to learn foreground lesion subject attributes in a skin disease classification problem. First, clinical photographs are annotated by dermatologists, and then the original background information is masked with unique colors to generate several subsets with distinct background colors. Sample-balanced training and test sets are generated using random over/undersampling and data augmentation techniques. Finally, the deep learning networks are independently trained on diverse subsets of backdrop colors to compare the performance of classifiers based on different background information. Extensive experiments demonstrate that color-based background information significantly affects the classification of skin diseases and that classifiers trained on the green subset achieve state-of-the-art performance for classifying black and red skin lesions.

    Highlights

    This study has given us new insights into skin diseases in Asian populations.
    This study presents a new method of exploring the skin disease classification.
    This study will help improve the accuracy of skin disease classification.

    References

    [1]
    Hay R.J., Johns N.E., Williams H.C., Bolliger I.W., Dellavalle R.P., Margolis D.J., Marks R., Naldi L., Weinstock M.A., Wulf S.K., et al., The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions, J. Invest. Dermatol. 134 (6) (2014) 1527–1534,.
    [2]
    Rogers H.W., Weinstock M.A., Feldman S.R., Coldiron B.M., Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012, JAMA Dermatol. 151 (10) (2015) 1081–1086,.
    [3]
    A. Mg, B. Tk, C. Sy, D. Sh, Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities, Comput. Biol. Med. 127, https://doi.org/10.1016/j.compbiomed.2020.104065.
    [4]
    Barata C., Celebi M.E., Marques J.S., A survey of feature extraction in dermoscopy image analysis of skin cancer, IEEE J. Biomed. Health Inf. 23 (3) (2019) 1096–1109,.
    [5]
    Zhu X., Guo K., Ren S., Hu B., Hu M., Fang H., Lightweight image super-resolution with expectation-maximization attention mechanism, IEEE Trans. Circuits Syst. Video Technol. 32 (3) (2022) 1273–1284,.
    [6]
    Wang S., Pasi G., Hu L., Cao L., The era of intelligent recommendation: editorial on intelligent recommendation with advanced AI and learning, IEEE Intelligent Systems 35 (5) (2020) 3–6,.
    [7]
    Rasheed A., Umar A.I., Shirazi S.H., Khan Z., Nawaz S., Shahzad M., Automatic eczema classification in clinical images based on hybrid deep neural network, Comput. Biol. Med. 147 (2022),. URL https://www.sciencedirect.com/science/article/pii/S0010482522005698.
    [8]
    Yan J., Zhang B., Zhou M., Kwok H.F., Siu S.W., Multi-branch-CNN: Classification of ion channel interacting peptides using multi-branch convolutional neural network, Comput. Biol. Med. 147 (2022),. URL https://www.sciencedirect.com/science/article/pii/S0010482522004954.
    [9]
    Faragallah O.S., El-Hoseny H., El-Shafai W., El-Rahman W.A., El-Sayed H.S., El-Rabaie E.-S.M., El-Samie F.E.A., Geweid G.G.N., A comprehensive survey analysis for present solutions of medical image fusion and future directions, IEEE Access 9 (2021) 11358–11371,.
    [10]
    Rehman A., Ahmed Butt M., Zaman M., A survey of medical image analysis using deep learning approaches, in: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 2021, pp. 1334–1342,.
    [11]
    Wang S., Cao L., Hu L., Berkovsky S., Huang X., Xiao L., Lu W., Hierarchical attentive transaction embedding with intra-and inter-transaction dependencies for next-item recommendation, IEEE Intelligent Systems 36 (04) (2021) 56–64,.
    [12]
    Codella N.C.F., Gutman D., Celebi M.E., Helba B., Marchetti M.A., Dusza S.W., Kalloo A., Liopyris K., Mishra N., Kittler H., Halpern A., Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 168–172,.
    [13]
    Zhou S.K., Greenspan H., Davatzikos C., Duncan J.S., Van Ginneken B., Madabhushi A., Prince J.L., Rueckert D., Summers R.M., A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises, Proc. IEEE 109 (5) (2021) 820–838,.
    [14]
    Lio P.A., Nghiem P., Interactive atlas of dermoscopy, J. Am. Acad. Dermatol. 50 (5) (2004) 807–808,.
    [15]
    Giotis I., Molders N., Land S., Biehl M., Jonkman M.F., Petkov N., MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images, Expert Syst. Appl. 42 (19) (2015) 6578–6585,. URL https://www.sciencedirect.com/science/article/pii/S0957417415002705.
    [16]
    Gul S., Khan M.S., Bibi A., Khandakar A., Ayari M.A., Chowdhury M.E., Deep learning techniques for liver and liver tumor segmentation: A review, Comput. Biol. Med. 147 (2022),.
    [17]
    Khadka R., Jha D., Hicks S., Thambawita V., Riegler M.A., Ali S., Halvorsen P., Meta-learning with implicit gradients in a few-shot setting for medical image segmentation, Comput. Biol. Med. 143 (2022),.
    [18]
    Zhu X., Guo K., Fang H., Chen L., Ren S., Hu B., Cross view capture for stereo image super-resolution, IEEE Trans. Multimed. (2021) 1,.
    [19]
    Aizenberg I., Aizenberg N., Butakov C., Farberov E., Image recognition on the neural network based on multi-valued neurons, in: Proceedings 15th International Conference on Pattern Recognition, in: ICPR-2000, vol. 2, 2000, pp. 989–992,. vol.2.
    [20]
    Hinton G.E., Salakhutdinov R.R., Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507,. arXiv:https://www.science.org/doi/pdf/10.1126/science.1127647.
    [21]
    Dahl G.E., Yu D., Deng L., Acero A., Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, IEEE Trans. Audio Speech Lang. Process. 20 (1) (2012) 30–42,.
    [22]
    Hinton G., Deng L., Yu D., Dahl G.E., Mohamed A.-r., Jaitly N., Senior A., Vanhoucke V., Nguyen P., Sainath T.N., Kingsbury B., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Process. Mag. 29 (6) (2012) 82–97,.
    [23]
    Wang S., Hu L., Cao L., Huang X., Lian D., Liu W., Attention-based transactional context embedding for next-item recommendation, Association for the Advancement of Artificial Intelligence, 2018, pp. 2532–2539,.
    [24]
    Krizhevsky A., Sutskever I., Hinton G.E., ImageNet classification with deep convolutional neural networks, in: Pereira F., Burges C., Bottou L., Weinberger K. (Eds.), Advances in Neural Information Processing Systems, Vol. 25, Curran Associates, Inc., 2012, URL https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
    [25]
    Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J., Distributed representations of words and phrases and their compositionality, in: Burges C., Bottou L., Welling M., Ghahramani Z., Weinberger K. (Eds.), Advances in Neural Information Processing Systems, Vol. 26, Curran Associates, Inc., 2013, URL https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.
    [26]
    Mikolov T., Chen K., Corrado G., Dean J., Efficient estimation of word representations in vector space, 2013,. arXiv preprint arXiv:1301.3781.
    [27]
    LeCun Y., Boser B., Denker J., Henderson D., Howard R., Hubbard W., Jackel L., Handwritten digit recognition with a back-propagation network, in: Touretzky D. (Ed.), Advances in Neural Information Processing Systems, Vol. 2, Morgan-Kaufmann, 1989, URL https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.
    [28]
    Lecun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324,.
    [29]
    Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A., Going deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9,.
    [30]
    Simonyan K., Zisserman A., Very deep convolutional networks for large-scale image recognition, 2014,. arXiv preprint arXiv:1409.1556.
    [31]
    He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778,.
    [32]
    Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q., Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269,.
    [33]
    Xie S., Girshick R., Dollár P., Tu Z., He K., Aggregated residual transformations for deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987–5995,.
    [34]
    Codella N.C.F., Nguyen Q.-B., Pankanti S., Gutman D.A., Helba B., Halpern A.C., Smith J.R., Deep learning ensembles for melanoma recognition in dermoscopy images, IBM J. Res. Dev. 61 (4/5) (2017) 5:1–5:15,.
    [35]
    Haenssle H.A., Fink C., Schneiderbauer R., Toberer F., Buhl T., Blum A., Kalloo A., Hassen A.B.H., Thomas L., Enk A., et al., Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists, Ann. Oncol. 29 (8) (2018) 1836–1842,.
    [36]
    Tschandl P., Rosendahl C., Akay B.N., Argenziano G., Blum A., Braun R.P., Cabo H., Gourhant J.-Y., Kreusch J., Lallas A., et al., Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks, JAMA Dermatol. 155 (1) (2019) 58–65,.
    [37]
    Maron R.C., Weichenthal M., Utikal J.S., Hekler A., Berking C., Hauschild A., Enk A.H., Haferkamp S., Klode J., Schadendorf D., et al., Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks, Eur. J. Cancer 119 (2019) 57–65,.
    [38]
    Han S.S., Kim M.S., Lim W., Park G.H., Park I., Chang S.E., Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm, J. Invest. Dermatol. 138 (7) (2018) 1529–1538,.
    [39]
    Fujisawa Y., Otomo Y., Ogata Y., Nakamura Y., Fujita R., Ishitsuka Y., Watanabe R., Okiyama N., Ohara K., Fujimoto M., Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis, Br. J. Dermatol. 180 (2) (2019) 373–381,.
    [40]
    Brinker T.J., Hekler A., Enk A.H., Klode J., Hauschild A., Berking C., Schilling B., Haferkamp S., Schadendorf D., Fröhling S., et al., A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task, Eur. J. Cancer 111 (2019) 148–154,.
    [41]
    Jiang Y., Xiong J., Li H., Yang X., Yu W., Gao M., Zhao X., Ma Y., Zhang W., Guan Y., et al., Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network, Br. J. Dermatol. 182 (3) (2020) 754–762,.
    [42]
    Cruz-Roa A.A., Arevalo Ovalle J.E., Madabhushi A., Gonzlez Osorio F.A., A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2013, pp. 403–410,.
    [43]
    Zhang J., Marszałek M., Lazebnik S., Schmid C., Local features and kernels for classification of texture and object categories: A comprehensive study, Int. J. Comput. Vis. 73 (2) (2007) 213–238,.
    [44]
    Barbu A., Mayo D., Alverio J., Luo W., Wang C., Gutfreund D., Tenenbaum J., Katz B., ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models, in: Wallach H., Larochelle H., Beygelzimer A., d’Alché Buc F., Fox E., Garnett R. (Eds.), Advances in Neural Information Processing Systems, Vol. 32, Curran Associates, Inc., 2019, URL https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf.
    [45]
    Rosenfeld A., Zemel R.S., Tsotsos J.K., The elephant in the room, 2018,. CoRR abs/1808.03305. arXiv:1808.03305. URL http://arxiv.org/abs/1808.03305.
    [46]
    Weingast J., Scheibböck C., Wurm E.M., Ranharter E., Porkert S., Dreiseitl S., Posch C., Binder M., A prospective study of mobile phones for dermatology in a clinical setting, J. Telemed. Telecare 19 (4) (2013) 213–218,.
    [47]
    Hogan K., Cullan J., Patel V., Rajpara A., Aires D., Overcalling a teledermatology selfie: a new twist in a growing field, Dermatol. Online J. 21 (6) (2015),.
    [48]
    Han S.S., Park G.H., Lim W., Kim M.S., Na J.I., Park I., Chang S.E., Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network, PLoS One 13 (1) (2018) 1–14,.
    [49]
    hua Ng J., Goyal M., Hewitt B., Yap M.H., The effect of color constancy algorithms on semantic segmentation of skin lesions, in: Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, Vol. 10953, SPIE, 2019, pp. 138–145,.
    [50]
    Zech J.R., Badgeley M.A., Liu M., Costa A.B., Titano J.J., Oermann E.K., Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study, PLoS Med. 15 (11) (2018),.
    [51]
    Xiao K.Y., Engstrom L., Ilyas A., Madry A., Noise or signal: The role of image backgrounds in object recognition, in: International Conference on Learning Representations, 2021, URL https://openreview.net/forum?id=gl3D-xY7wLq.

    Cited By

    View all

    Index Terms

    1. Background selection schema on deep learning-based classification of dermatological disease
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Computers in Biology and Medicine
            Computers in Biology and Medicine  Volume 149, Issue C
            Oct 2022
            1186 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 01 October 2022

            Author Tags

            1. Artificial intelligence
            2. Deep convolutional neural network
            3. Image classification
            4. Dermatological diseases classification

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0

            Other Metrics

            Citations

            Cited By

            View all

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media