Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

Computational methods in the analysis of SARS-CoV-2 in mammals: : A systematic review of the literature

Published: 01 May 2024 Publication History

Abstract

SARS-CoV-2 is an enveloped RNA virus that causes severe respiratory illness in humans and animals. It infects cells by binding the Spike protein to the host’s angiotensin-converting enzyme 2 (ACE2). The bat is considered the natural host of the virus, and zoonotic transmission is a significant risk and can happen when humans come into close contact with infected animals. Therefore, understanding the interconnection between human, animal, and environmental health is important to prevent and control future coronavirus outbreaks. This work aimed to systematically review the literature to identify characteristics that make mammals suitable virus transmitters and raise the main computational methods used to evaluate SARS-CoV-2 in mammals. Based on this review, it was possible to identify the main factors related to transmissions mentioned in the literature, such as the expression of ACE2 and proximity to humans, in addition to identifying the computational methods used for its study, such as Machine Learning, Molecular Modeling, Computational Simulation, between others. The findings of the work contribute to the prevention and control of future outbreaks, provide information on transmission factors, and highlight the importance of advanced computational methods in the study of infectious diseases that allow a deeper understanding of transmission patterns and can help in the development of more effective control and intervention strategies.

Highlights

This work assists in planning strategies and control of SARS-CoV-2.
Human, animal, and environmental health is vital to prevent future virus outbreaks.
ACE2 expression and the proximity of mammals to humans favor the vírus’ transmission.
Computational molecular dynamics simulation dominates SARS-CoV-2 analysis in mammals.

References

[1]
Evans John P., Liu Shan-Lu, Role of host factors in SARS-CoV-2 entry, J. Biol. Chem. 297 (1) (2021).
[2]
Tiwari Ruchi, Dhama Kuldeep, Sharun Khan, Iqbal Yatoo Mohd, Malik Yashpal Singh, Singh Rajendra, Michalak Izabela, Sah Ranjit, Bonilla-Aldana D Katterine, Rodriguez-Morales Alfonso J, COVID-19: Animals, veterinary and zoonotic links, Vet. Q. 40 (1) (2020) 169–182.
[3]
Arora Pooja, Jafferany Mohammad, Lotti Torello, Sadoughifar Roxanna, Goldust Mohamad, Learning from history: Coronavirus outbreaks in the past, Dermatol. Ther. 33 (4) (2020).
[4]
Munir Khalid, Ashraf Shoaib, Munir Isra, Khalid Hamna, Muneer Mohammad Akram, Mukhtar Noreen, Amin Shahid, Ashraf Sohaib, Imran Muhammad Ahmad, Chaudhry Umer, et al., Zoonotic and reverse zoonotic events of SARS-CoV-2 and their impact on global health, Emerg. Microbes Infect. 9 (1) (2020) 2222–2235.
[5]
Lee Nelson, Hui David, Wu Alan, Chan Paul, Cameron Peter, Joynt Gavin M, Ahuja Anil, Yung Man Yee, Leung CB, To KF, et al., A major outbreak of severe acute respiratory syndrome in Hong Kong, N. Engl. J. Med. 348 (20) (2003) 1986–1994.
[6]
Gautam Aasish, Kaphle Krishna, Shrestha Birendra, Phuyal Samiksha, Susceptibility to SARS, MERS, and COVID-19 from animal health perspective, Open vet. J. 10 (2) (2020) 164–177.
[7]
Smits Saskia L, De Lang Anna, Van Den Brand Judith MA, Leijten Lonneke M, Van Ijcken Wilfred F, Eijkemans Marinus JC, Van Amerongen Geert, Kuiken Thijs, Andeweg Arno C, Osterhaus Albert DME, et al., Exacerbated innate host response to SARS-CoV in aged non-human primates, PLoS Pathog. 6 (2) (2010).
[8]
Kuiken Thijs, Fouchier Ron AM, Schutten Martin, Rimmelzwaan Guus F, Van Amerongen Geert, Van Riel Debby, Laman Jon D, De Jong Ton, Van Doornum Gerard, Lim Wilina, et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome, Lancet 362 (9380) (2003) 263–270.
[9]
Zhou Ziqi, Ali Abraham, Walelign Elias, Demissié Getnet F, Masry Ihab El, Abayneh Takele, Getachew Belayneh, Krishnan Pavithra, Ng Daisy YM, Gardner Emma, et al., Genetic diversity and molecular epidemiology of middle east respiratory syndrome Coronavirus in dromedaries in Ethiopia, 2017 to 2020, Emerg. Microbes Infect. (just-accepted) (2023).
[10]
Zaki Ali M, Van Boheemen Sander, Bestebroer Theo M, Osterhaus Albert DME, Fouchier Ron AM, Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med. 367 (19) (2012) 1814–1820.
[11]
Meyer Benjamin, Müller Marcel A, Corman Victor M, Reusken Chantal BEM, Ritz Daniel, Godeke Gert-Jan, Lattwein Erik, Kallies Stephan, Siemens Artem, van Beek Janko, et al., Antibodies against MERS Coronavirus in dromedary camels, united Arab Emirates, 2003 and 2013, Emerg. Infect. Dis. 20 (4) (2014) 552.
[12]
Rahman Sidra, Ullah Sana, Shinwari Zabta Khan, Ali Muhammad, Bats-associated beta-Coronavirus detection and characterization: First report from Pakistan, Infect. Genet. Evol. 108 (2023).
[13]
Huang Chaolin, Wang Yeming, Li Xingwang, Ren Lili, Zhao Jianping, Hu Yi, Zhang Li, Fan Guohui, Xu Jiuyang, Gu Xiaoying, et al., Clinical features of patients infected with 2019 novel Coronavirus in Wuhan, China, Lancet 395 (10223) (2020) 497–506.
[14]
Lorusso Alessio, Calistri Paolo, Petrini Antonio, Savini Giovanni, Decaro Nicola, Novel Coronavirus (SARS-CoV-2) epidemic: A veterinary perspective, Vet. Italiana 56 (1) (2020) 5–10.
[15]
Wong Gary, Bi Yu-Hai, Wang Qi-Hui, Chen Xin-Wen, Zhang Zhi-Gang, Yao Yong-Gang, Zoonotic origins of human Coronavirus 2019 (HCoV-19/SARS-CoV-2): Why is this work important?, Zool. Res. 41 (3) (2020) 213.
[16]
Mahdy Mohamed A.A., Younis Waleed, Ewaida Zamzam, An overview of SARS-CoV-2 and animal infection, Front. Vet. Sci. 7 (2020).
[17]
Grange Zoë L, Goldstein Tracey, Johnson Christine K, Anthony Simon, Gilardi Kirsten, Daszak Peter, Olival Kevin J, O’Rourke Tammie, Murray Suzan, Olson Sarah H, et al., Ranking the risk of animal-to-human spillover for newly discovered viruses, Proc. Natl. Acad. Sci. 118 (15) (2021).
[18]
Yoo Han Sang, Yoo Dongwan, COVID-19 and veterinarians for one health, zoonotic-and reverse-zoonotic transmissions, J. Vet. Sci. 21 (3) (2020).
[19]
de la Fuente José, de Mera Isabel G Fernández, Gortázar Christian, Challenges at the host-arthropod-Coronavirus interface and COVID-19: A one health approach, Front. Biosci.-Landmark 26 (8) (2021) 379–386.
[20]
Korath Anna DJ, Janda Jozef, Untersmayr Eva, Sokolowska Milena, Feleszko Wojciech, Agache Ioana, Adel Seida Ahmed, Hartmann Katrin, Jensen-Jarolim Erika, Pali-Schöll Isabella, One health: EAACI position paper on Coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-Cov-2, Allergy 77 (1) (2022) 55–71.
[21]
Sekar P Chandra, Srinivasan E, Chandrasekhar G, Paul D, Sanjay G, Surya S, Kumar NS, Rajasekaran R, Probing the competitive inhibitor efficacy of frog-skin alpha helical AMPs identified against ACE2 binding to SARS-CoV-2 S1 spike protein as therapeutic scaffold to prevent COVID-19, J. Mol. Model. 28 (5) (2022) 1–13.
[22]
Albery Gregory F, Becker Daniel J, Brierley Liam, Brook Cara E, Christofferson Rebecca C, Cohen Lily E, Dallas Tad A, Eskew Evan A, Fagre Anna, Farrell Maxwell J, et al., The science of the host–virus network, Nat. Microbiol. 6 (12) (2021) 1483–1492.
[23]
Damas Joana, Hughes Graham M, Keough Kathleen C, Painter Corrie A, Persky Nicole S, Corbo Marco, Hiller Michael, Koepfli Klaus-Peter, Pfenning Andreas R, Zhao Huabin, et al., Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates, Proc. Natl. Acad. Sci. 117 (36) (2020) 22311–22322.
[24]
Kumar Ashutosh, Pandey Sada N, Pareek Vikas, Narayan Ravi K, Faiq Muneeb A, Kumari Chiman, Predicting susceptibility for SARS-CoV-2 infection in domestic and wildlife animals using ACE2 protein sequence homology, Zoo Biol. 40 (1) (2021) 79–85.
[25]
Lam SD, Bordin N, Waman VP, Scholes HM, Ashford P, Sen N, Van Dorp L, Rauer C, Dawson NL, Pang CSM, et al., SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals, Sci. Rep. 10 (1) (2020) 1–14.
[26]
Liu Zhixin, Xiao Xiao, Wei Xiuli, Li Jian, Yang Jing, Tan Huabing, Zhu Jianyong, Zhang Qiwei, Wu Jianguo, Liu Long, Composition and divergence of Coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2, J. Med. Virol. 92 (6) (2020) 595–601.
[27]
Melin Amanda D., Janiak Mareike C., Marrone III F., Arora Paramjit S., Higham James P., Comparative ACE2 variation and primate COVID-19 risk, Commun. Biol. 3 (1) (2020) 641.
[28]
Forni Diego, Cagliani Rachele, Clerici Mario, Sironi Manuela, Molecular evolution of human Coronavirus genomes, Trends Microbiol. 25 (1) (2017) 35–48.
[29]
Singh Devika, Yi Soojin V., On the origin and evolution of SARS-CoV-2, Exper. Mol. Med. 53 (4) (2021) 537–547.
[30]
Saif L.J., Animal coronaviruses: What can they teach us about the severe acute respiratory syndrome?, Revue scientifique et technique (Int. Off. Epizootics) 23 (2) (2004) 643–660.
[31]
Frutos Roger, Serra-Cobo Jordi, Pinault Lucile, Lopez Roig Marc, Devaux Christian A, Emergence of bat-related betacoronaviruses: Hazard and risks, Front. Microbiol. 12 (2021).
[32]
Ye Zi-Wei, Yuan Shuofeng, Yuen Kit-San, Fung Sin-Yee, Chan Chi-Ping, Jin Dong-Yan, Zoonotic origins of human Coronaviruses, Int. J. Biol. Sci. 16 (10) (2020) 1686.
[33]
Dudas Gytis, Carvalho Luiz Max, Rambaut Andrew, Bedford Trevor, MERS-CoV spillover at the camel-human interface, elife 7 (2018).
[34]
Widagdo W, Sooksawasdi Na Ayudhya Syriam, Hundie Gadissa B, Haagmans Bart L, Host determinants of MERS-CoV transmission and pathogenesis, Viruses 11 (3) (2019) 280.
[35]
Lu Roujian, Zhao Xiang, Li Juan, Niu Peihua, Yang Bo, Wu Honglong, Wang Wenling, Song Hao, Huang Baoying, Zhu Na, et al., Genomic characterisation and epidemiology of 2019 novel Coronavirus: implications for virus origins and receptor binding, Lancet 395 (10224) (2020) 565–574.
[36]
Gupta Shishir K, Minocha Rashmi, Thapa Prithivi Jung, Srivastava Mugdha, Dandekar Thomas, Role of the pangolin in origin of SARS-CoV-2: An evolutionary perspective, Int. J. Mol. Sci. 23 (16) (2022) 9115.
[37]
Jackson Cody B., Farzan Michael, Chen Bing, Choe Hyeryun, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol. 23 (1) (2022) 3–20.
[38]
Zhang Guangzhi, Li Bin, Yoo Dongwan, Qin Tong, Zhang Xiaodong, Jia Yaxiong, Cui Shangjin, Animal coronaviruses and SARS-CoV-2, Transbound. Emerg. Dis. 68 (3) (2021) 1097–1110.
[39]
Pasquarelli-do Nascimento Gabriel, Braz-de Melo Heloisa Antoniella, Faria Sara Socorro, Santos Igor de Oliveira, Kobinger Gary P, Magalhães Kelly Grace, Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity, Front. Endocrinol. 11 (2020) 530.
[40]
Khaledian Ehdieh, Ulusan Sinem, Erickson Jeffery, Fawcett Stephen, Letko Michael C, Broschat Shira L, Sequence determinants of human-cell entry identified in ACE2-independent bat Sarbecoviruses: A combined laboratory and computational network science approach, EBioMedicine 79 (2022).
[41]
Decaro Nicola, Lorusso Alessio, Novel human Coronavirus (SARS-CoV-2): A lesson from animal Coronaviruses, Vet. Microbiol. 244 (2020).
[42]
Gibbs E. Paul J., Anderson Tara C., et al., One world-one health and the global challenge of epidemic diseases of viral aetiology, Vet. Italiana 45 (1) (2009) 35–44.
[43]
Lerner Henrik, Berg Charlotte, The concept of health in one health and some practical implications for research and education: What is one health?, Infect. Ecol. Epidemiol. 5 (1) (2015) 25300.
[44]
Destoumieux-Garzón Delphine, Mavingui Patrick, Boetsch Gilles, Boissier Jérôme, Darriet Frédéric, Duboz Priscilla, Fritsch Clémentine, Giraudoux Patrick, Le Roux Frédérique, Morand Serge, et al., The one health concept: 10 years old and a long road ahead, Front. Vet. Sci. (2018) 14.
[45]
Day Michael J., One health: The importance of companion animal vector-borne diseases, Parasites Vect. 4 (2011) 1–6.
[46]
Owens Jacqueline K., Systematic reviews: Brief overview of methods, limitations, and resources, Nurse Author Ed. 31 (3–4) (2021) 69–72.
[47]
Mollentze Nardus, Keen Deborah, Munkhbayar Uuriintuya, Biek Roman, Streicker Daniel G, Variation in the ACE2 receptor has limited utility for SARS-CoV-2 host prediction, bioRxiv (2022).
[48]
Wardeh Maya, Baylis Matthew, Blagrove Marcus S.C., Predicting mammalian hosts in which novel Coronaviruses can be generated, Nat. Commun. 12 (1) (2021) 1–12.
[49]
Becker Daniel J, Albery Gregory F, Sjodin Anna R, Poisot Timothée, Bergner Laura M, Chen Binqi, Cohen Lily E, Dallas Tad A, Eskew Evan A, Fagre Anna C, et al., Optimising predictive models to prioritise viral discovery in zoonotic reservoirs, Lancet Microbe (2022).
[50]
Kou Zheng, Huang Yi-Fan, Shen Ao, Kosari Saeed, Liu Xiang-Rong, Qiang Xiao-Li, Prediction of pandemic risk for animal-origin coronavirus using a deep learning method, Infect. Dis. Poverty 10 (05) (2021) 62–70.
[51]
Lytras Spyros, Hughes Joseph, Martin Darren, Swanepoel Phillip, de Klerk Arné, Lourens Rentia, Kosakovsky Pond Sergei L, Xia Wei, Jiang Xiaowei, Robertson David L, Exploring the natural origins of SARS-CoV-2 in the light of recombination, Genome Biol. Evol. 14 (2) (2022) evac018.
[52]
Magateshvaren Saras Murali Aadhitya, Patro L Ponoop Prasad, Uttamrao Patil Pranita, Rathinavelan Thenmalarchelvi, Geographical distribution of SARS-CoV-2 amino acids mutations and the concomitant evolution of seven distinct clades in non-human hosts, Zoonoses Public Health (2022).
[53]
Rojas-Cruz Alexis Felipe, Gallego-Gómez Juan Carlos, Bermúdez-Santana Clara Isabel, RNA structure-altering mutations underlying positive selection on spike protein reveal novel putative signatures to trace crossing host-species barriers in Betacoronavirus, RNA Biol. 19 (1) (2022) 1019–1044.
[54]
Lupala Cecylia Severin, Kumar Vikash, Su Xiao-dong, Wu Chun, Liu Haiguang, Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain, Comput. Biol. Med. 141 (2022).
[55]
Rajendran Madhusudan, Babbitt Gregory A., Persistent cross-species SARS-CoV-2 variant infectivity predicted via comparative molecular dynamics simulation, bioRxiv (2022).
[56]
Celik Ismail, Tallei Trina E., A computational comparative analysis of the binding mechanism of molnupiravir’s active metabolite to RNA-dependent RNA polymerase of wild-type and delta subvariant AY. 4 of SARS-CoV-2, J. Cell. Biochem. 123 (4) (2022) 807–818.
[57]
Hemmati Seyed Ali, Tabein Saeid, Insect protease inhibitors; Promising inhibitory compounds against SARS-CoV-2 main protease, Comput. Biol. Med. 142 (2022).
[58]
Chen Ping, Wang Jingfang, Xu Xintian, Li Yuping, Zhu Yan, Li Xuan, Li Ming, Hao Pei, Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk, Comput. Biol. Chem. 96 (2022).
[59]
Khan Abbas, Hussain Sarfaraz, Ahmad Sajjad, Suleman Muhammad, Bukhari Imrana, Khan Taimoor, Rashid Farooq, Azad Abul Kalam, Waseem Muhammad, Khan Wajid, et al., Computational modelling of potentially emerging SARS-CoV-2 spike protein RBDs mutations with higher binding affinity towards ACE2: A structural modelling study, Comput. Biol. Med. 141 (2022).
[60]
Dong Xiaofeng, Penrice-Randal Rebekah, Goldswain Hannah, Prince Tessa, Randle Nadine, Salguero Francisco J, Tree Julia, Vamos Ecaterina, Nelson Charlotte, Clark Jordan, et al., Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers, GigaScience 11 (2022).
[61]
Kaushik Rahul, Kumar Naveen, Zhang Kam YJ, Srivastava Pratiksha, Bhatia Sandeep, Malik Yashpal Singh, A novel structure-based approach for identification of vertebrate susceptibility to SARS-CoV-2: Implications for future surveillance programmes, Environ. Res. 212 (2022).
[62]
Robinson Sarah A, Raybould Matthew IJ, Schneider Constantin, Wong Wing Ki, Marks Claire, Deane Charlotte M, Epitope profiling using computational structural modelling demonstrated on Coronavirus-binding antibodies, PLoS Comput. Biol. 17 (12) (2021).
[63]
Peng Min-Sheng, Li Jian-Bo, Cai Zheng-Fei, Liu Hang, Tang Xiaolu, Ying Ruochen, Zhang Jia-Nan, Tao Jia-Jun, Yin Ting-Ting, Zhang Tao, et al., The high diversity of SARS-CoV-2-related Coronaviruses in Pangolins alerts potential ecological risks, Zool. Res. 42 (6) (2021) 834.
[64]
Burkholz Scott, Pokhrel Suman, Kraemer Benjamin R, Mochly-Rosen Daria, Carback III Richard T, Hodge Tom, Harris Paul, Ciotlos Serban, Wang Lu, Herst CV, et al., Paired SARS-CoV-2 spike protein mutations observed during ongoing SARS-CoV-2 viral transfer from humans to minks and back to humans, Infect. Genet. Evol. 93 (2021).
[65]
King Sean B., Singh Mona, Comparative genomic analysis reveals varying levels of mammalian adaptation to Coronavirus infections, PLoS Comput. Biol. 17 (11) (2021).
[66]
Brnabic Alan, Hess Lisa M., Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making, BMC Med. Inform. Decis. Making 21 (1) (2021) 1–19.
[67]
Weissler E Hope, Naumann Tristan, Andersson Tomas, Ranganath Rajesh, Elemento Olivier, Luo Yuan, Freitag Daniel F, Benoit James, Hughes Michael C, Khan Faisal, et al., The role of machine learning in clinical research: Transforming the future of evidence generation, Trials 22 (1) (2021) 1–15.
[68]
Sarker Iqbal H., Machine learning: Algorithms, real-world applications and research directions, SN Comput. Sci. 2 (3) (2021) 160.
[69]
Giribet Gonzalo, Morphology should not be forgotten in the era of genomics–a phylogenetic perspective, Zoologischer Anzeiger-A J. Comparat. Zool. 256 (2015) 96–103.
[70]
Darling Aaron E, Jospin Guillaume, Lowe Eric, Matsen IV Frederick A, Bik Holly M, Eisen Jonathan A, PhyloSift: Phylogenetic analysis of genomes and metagenomes, PeerJ 2 (2014).
[71]
Hollingsworth Scott A., Dror Ron O., Molecular dynamics simulation for all, Neuron 99 (6) (2018) 1129–1143.
[72]
Badar Mohammad Sufian, Shamsi Shazmeen, Ahmed Jawed, Alam Md Afshar, Molecular dynamics simulations: Concept, methods, and applications, in: Transdisciplinarity, Springer, 2022, pp. 131–151.
[73]
Amarasinghe Shanika L, Su Shian, Dong Xueyi, Zappia Luke, Ritchie Matthew E, Gouil Quentin, Opportunities and challenges in long-read sequencing data analysis, Genome Biol. 21 (1) (2020) 1–16.
[74]
Rhee Seung Yon, Bioinformatics. Current limitations and insights for the future, Plant Physiol. 138 (2) (2005) 569–570.
[75]
Branco Iuliia, Choupina Altino, Bioinformatics: New tools and applications in life science and personalized medicine, Appl. Microbiol. Biotechnol. 105 (2021) 937–951.
[76]
Liu Yinghui, Hu Gaowei, Wang Yuyan, Ren Wenlin, Zhao Xiaomin, Ji Fansen, Zhu Yunkai, Feng Fei, Gong Mingli, Ju Xiaohui, et al., Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2, Proc. Natl. Acad. Sci. 118 (12) (2021).
[77]
Zhao Xuesen, Chen Danying, Szabla Robert, Zheng Mei, Li Guoli, Du Pengcheng, Zheng Shuangli, Li Xinglin, Song Chuan, Li Rui, et al., Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2, J. Virol. 94 (18) (2020) e00940–20.
[78]
Kim Yunjeong, Gaudreault Natasha N, Meekins David A, Perera Krishani D, Bold Dashzeveg, Trujillo Jessie D, Morozov Igor, McDowell Chester D, Chang Kyeong-Ok, Richt Juergen A, Effects of spike mutations in SARS-CoV-2 variants of concern on human or animal ACE2-mediated virus entry and neutralization, Microbiol. Spectrum 10 (3) (2022) e01789–21.
[79]
Tan Cedric, Lam Su Datt, Richard Damien, Owen Christopher J, Berchtold Dorothea, Orengo Christine, Nair Meera Surendran, Kuchipudi Suresh V, Kapur Vivek, van Dorp Lucy, et al., Transmission of SARS-CoV-2 from humans to animals and potential host adaptation, Nature Commun. 13 (1) (2022) 1–13.
[80]
Stout Alison E., André Nicole M., Jaimes Javier A., Millet Jean K, Whittaker Gary R, Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit?, Vet. Microbiol. 247 (2020).
[81]
Prince Tessa, Smith Shirley L., Radford Alan D., Solomon Tom, Hughes Grant L., Patterson Edward I., SARS-CoV-2 infections in animals: Reservoirs for reverse zoonosis and models for study, Viruses 13 (3) (2021),. URL https://www.mdpi.com/1999-4915/13/3/494.
[82]
Dhama Kuldeep, Patel Shailesh Kumar, Sharun Khan, Pathak Mamta, Tiwari Ruchi, Yatoo Mohd Iqbal, Malik Yashpal Singh, Sah Ranjit, Rabaan Ali A, Panwar Parmod Kumar, et al., SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus, Travel Med. Infect. Dis. 37 (2020).
[83]
Ruiz-Aravena Manuel, McKee Clifton, Gamble Amandine, Lunn Tamika, Morris Aaron, Snedden Celine E, Yinda Claude Kwe, Port Julia R, Buchholz David W, Yeo Yao Yu, et al., Ecology, evolution and spillover of Coronaviruses from bats, Nat. Rev. Microbiol. 20 (5) (2022) 299–314.
[84]
Petrovan Silviu O, Aldridge David C, Bartlett Harriet, Bladon Andrew J, Booth Hollie, Broad Steven, Broom Donald M, Burgess Neil D, Cleaveland Sarah, Cunningham Andrew A, et al., Post COVID-19: A solution scan of options for preventing future zoonotic epidemics, Biol. Rev. 96 (6) (2021) 2694–2715.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 173, Issue C
May 2024
993 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 May 2024

Author Tags

  1. Bioinformatics
  2. COVID-19
  3. SARS-CoV-2
  4. Machine learning
  5. Mammals

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media