Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Service composition for IP smart object using realtime Web protocols

Published: 01 January 2016 Publication History

Abstract

The Internet of Things (IoT) refers to a world-wide network of interconnected physical things using standardized communication protocols. Recent advancements in IoT protocol stack unveil a possibility for the future IoT based on the stable and scalable Internet Protocol (IP). Then, how can data and events introduced by IP networked things be efficiently exchanged and aggregated in various application domains? The problem, known as service composition, is essential to support the rapid creation of new ubiquitous applications. This article explains the practicability of the future full-IP IoT with realtime Web protocols and discusses the research challenges of service composition. Identify future full-IP IoT with IP smart object using realtime Web protocolState the problem of service composition problem in the future IoTReview the state of the art of service composition in the future IoTProvide research challenges of service composition in the future IoT

References

[1]
M. Roberti, The internet of things revisited, RFID Journal, May, 2010.
[2]
Devices Profile for Web Services Version 1.1, in: Tech. rep, OASIS, Jul. 2009.
[3]
Z. Shelby, K. Hartke, C. Bormann, Constrained application protocol (CoAP), IETF Internet Standard, RFC, 7252 (Jun. 2014).
[4]
M.N. Huhns, M.P. Singh, Service-oriented computing: key concepts and principles, IEEE Internet Comput., 9 (2005) 75-81.
[5]
S. Dustdar, W. Schreiner, A survey on web services composition, Int. J. Web Grid Serv., 1 (2005) 1-30.
[6]
Analyst Geoff Johnson Interviewed by Sue Bushell, M-commerce Key to Ubiquitous Internet, Jul. 2000.
[7]
L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput. Netw., 54 (2010) 2787-2805.
[8]
J.-P. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP: The Next Internet, Morgan Kaufmann, 2010.
[9]
A. Mitrokotsa, C. Douligeris, Integrated RFID and sensor networks: architectures and applications, 2009.
[10]
G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy, Smart objects as building blocks for the internet of things, IEEE Internet Comput., 14 (2010) 44-51.
[11]
Internet of Things Based on Smart Objects, in: Internet of Things Based on Smart Objects, Springer, 2014.
[12]
Z. Shelby, C. Bormann, 6LoWPAN: The Wireless Embedded Internet, Wiley Publishing, 2010.
[13]
T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur, R. Alexander, RPL: Ipv6 Routing Protocol for Low-power and Lossy Networks, RFC 6550 (Proposed Standard), Mar. 2012.
[14]
S.N. Han, S. Park, G.M. Lee, N. Crespi, Extending the device profile for web services (dpws) standard using a rest proxy, IEEE Internet Comput., 19 (2015) 10-17.
[15]
A. Stanford-Clark, H.L. Truong, Mqtt for sensor networks (mqtt-sn) protocol specification, in: Tech. Rep, IBM, Nov. 2013.
[16]
Web services architecture, in: W3C Working Group Note, W3C, Feb. 2004.
[17]
C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, D. Timmermann, Implementing powerful web services for highly resource-constrained devices, in: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, 2011, pp. 332-335.
[18]
G. Moritz, D. Timmermann, R. Stoll, F. Golatowski, Encoding and compression for the devices profile for web services, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 514-519.
[19]
G. Moritz, F. Golatowski, C. Lerche, D. Timmermann, Beyond 6lowpan: Web services in wireless sensor networks, IEEE Trans. Ind. Inf., 9 (2013) 1795-1805.
[20]
I. Samaras, G. Hassapis, J. Gialelis, A modified DPWS protocol stack for 6lowpan-based wireless sensor networks, IEEE Trans. Ind. Inf., 9 (2013) 209-217.
[21]
X. Yang, X. Zhi, Dynamic deployment of embedded services for DPWS-enabled devices, in: 2012 Int. Conf. on Computing, Measurement, Control and Sensor Network (CMCSN), 2012, pp. 302-306.
[22]
R.T. Fielding, R.N. Taylor, Principled design of the modern web architecture, ACM Trans. Internet Technol., 2 (2002) 115-150.
[23]
U. A¿ßmann, Invasive Software Composition, Springer, 2003.
[24]
R. Sessions, Fuzzy boundaries: objects, components, and web services, ACM Queue, 2 (2004) 40-47.
[25]
D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, D. Winer, Simple Object Access Protocol (SOAP) 1.1, W3C, May 2000.
[26]
Web services description language (WSDL) version 2.0 part 1: core language, W3C, Jun. 2007.
[27]
Web services business process execution language (WS-BPEL) version 2.0, in: Tech. Rep., Apr. 2007.
[28]
O. M. G. (OMG), Business process model and notation (bpmn) version 2.0, in: Tech. Rep, Jan. 2011.
[29]
K. Finkenzeller, RFID Handbook, Wiley, 2010.
[30]
C. Kerer, S. Dustdar, M. Jazayeri, D. Gomes, A. Szego, J.B. Caja, Presence-aware infrastructure using web services and RFID technologies, in: Proceedings of the 2nd European Workshop on Object Orientation and Web Services, Oslo, Norway, 2004.
[31]
J. Xingyi, L. Xiaodong, K. Ning, Y. Baoping, Efficient complex event processing over RFID data stream, in: 2008 Seventh IEEE/ACIS Intl. Conf. on Computer and Information Science (ICIS 08), IEEE, 2008, pp. 75-81.
[32]
A.V. Paliwal, N. Adam, C. Bornhövd, J. Schaper, Semantic discovery and composition of web services for RFID applications in border control, in: 3rd Intl. Semantic Web Conference (ISWC), Vol. 4, 2004.
[33]
L. Fagui, L. Kun, Z. Yang, Semantic web services and its application in third-party logistics, in: International Workshop on Education Technology and Training and International Workshop on Geoscience and Remote Sensing (ETT/GRS 2008), IEEE, 2008, pp. 626-630.
[34]
J. Vermeulen, K. Luyten, K. Coninx, Tangible mashups: exploiting links between the physical and virtual world, in: 1st Intl. Workshop on System Support for the Internet of Things (WoSSIoT'07), 2007.
[35]
D. Guinard, Mashing up your web-enabled home, in: Current Trends in Web Engineering, Springer, 2010, pp. 442-446.
[36]
D. Guinard, M. Mueller, J. Pasquier-Rocha, Giving RFID a rest: building a web-enabled epcis, in: Internet of Things (IOT), 2010, IEEE, 2010, pp. 1-8.
[37]
D. Guinard, C. Floerkemeier, S. Sarma, Cloud computing, rest and mashups to simplify RFID application development and deployment, in: Proceedings of the Second International Workshop on Web of Things, ACM, 2011, pp. 9.
[38]
D. Guinard, M. Mueller, V. Trifa, Restifying real-world systems: a practical case study in RFID, in: REST: From Research to Practice, Springer, 2011, pp. 359-379.
[39]
Z. Movahedi, B. Defude, A high-level service composition model for building applications on sensor networks, in: 2013 IEEE 22nd International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2013, pp. 202-207.
[40]
I. Toure, Y. Yang, Z.Q. Mi, L. Wang, Low redundant hop-counts for service composition optimization in dynamic network, in: 2011 Intl. Conf. on Cloud and Service Computing (CSC), 2011, pp. 26-31.
[41]
X. Wang, J. Wang, Z. Zheng, Y. Xu, M. Yang, Service composition in service-oriented wireless sensor networks with persistent queries, in: 2009 6th IEEE Consumer Communications and Networking Conference (CCNC 2009), IEEE, 2009, pp. 1-5.
[42]
S.C. Geyik, B.K. Szymanski, P. Zerfos, "Robust Dynamic Service Composition in Sensor Networks, IEEE Trans. Serv. Comput., 6 (Oct.-Dec. 2013) 560-572.
[43]
L. Zhang, M. Ma, G. Zhang, A. Lim, Distributed composition services for self-adaptation wireless sensor networks, in: 2013 Computing, Communications and IT Applications Conference (ComComAp), 2013, pp. 47-52.
[44]
K. Whitehouse, F. Zhao, J. Liu, Semantic streams: a framework for composable semantic interpretation of sensor data, in: Wireless Sensor Networks, Springer, 2006, pp. 5-20.
[45]
D. Guinard, V. Trifa, Towards the web of things: Web mashups for embedded devices, in: proceedings of WWW (Intl. World Wide Web Conferences), Madrid, Spain, 2009.
[46]
D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, D. Savio, Interacting with the soa-based internet of things: discovery, query, selection, and on-demand provisioning of web services, IEEE Trans. Serv. Comput., 3 (2010) 223-235.
[47]
K. Dar, A. Taherkordi, R. Rouvoy, F. Eliassen, Adaptable service composition for very-large-scale internet of things systems, in: Proceedings of the 8th Middleware Doctoral Symposium, ACM, 2011, pp. 2.
[48]
M. Roelands, J. Plomp, D. Mansilla, J.V. Salhi, G. Lee, N. Crespi, C. Valderrama, N. Menezes, M. Lopez-Ramos, C. van Nimwegen, D.D. Roeck, L.L. Bastida, Q. Reul, The diy smart experiences project: a european endeavour removing barriers for user-generated internet of things applications, in: Architecting the Internet of Things, Springer, New York Dordrecht Heidelberg London, 2011, pp. 279-316.
[49]
S.N. Han, G.M. Lee, N. Crespi, Context-aware service composition framework in web-enabled building automation system, in: 2012 16th Intl. Conf. on Intelligence in Next Generation Networks (ICIN), 2012, pp. 128-133.
[50]
S.N. Han, G. Lee, N. Crespi, Semantic context-aware service composition for building automation system, IEEE Trans. Ind. Inf., 10 (2014) 752-761.
[51]
J. Cubo, A. Brogi, E. Pimentel, Behaviour-aware compositions of things, in: 2012 IEEE International Conference on Green Computing and Communications (GreenCom), IEEE, 2012, pp. 1-8.
[52]
J. Cubo, L. González, A. Brogi, E. Pimentel, R. Ruggia, Towards run-time verification of compositions in the web of things using complex event processing, in: IX Jornadas de Ciencia e Ingeniería de Servicios (JCIS), 2013.
[53]
K. Li, L. Jiang, The research of web services composition based on context in internet of things, in: 2012 IEEE Intl. Conf. on Computer Science and Automation Engineering (CSAE), Vol. 1, 2012, pp. 160-163.
[54]
OWL 2 web ontology language document overview, W3C, Oct. 2009.
[55]
F. Bao, R. Chen, Trust management for the internet of things and its application to service composition, in: 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE, 2012, pp. 1-6.
[56]
V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili, M.A. Gerosa, A.B. Hamida, Service-oriented middleware for the future internet: state of the art and research directions, J. Internet Serv. Appl., 2 (2011) 23-45.
[57]
F. Daniel, M. Matera, J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, Understanding ui integration: a survey of problems, technologies, and opportunities, IEEE Internet Comput., 11 (2007) 59-66.
[58]
S. Vinoski, Serendipitous reuse, IEEE Internet Comput., 12 (2008) 84-87.
[59]
D. Guinard, V. Trifa, T. Pham, O. Liechti, Towards physical mashups in the web of things, in: Proceedings of INSS 2009 (IEEE Sixth International Conference on Networked Sensing Systems), Pittsburgh, USA, 2009.
[60]
D. Zhiquan, Y. Nan, C. Bo, C. Junliang, Data mashup in the internet of things, in: 2011 International Conference on Computer Science and Network Technology (ICCSNT), Vol. 2, IEEE, 2011, pp. 948-952.
[61]
E. Avilés-López, J.A. Garca-Macas, Mashing up the internet of things: a framework for smart environments, EURASIP J. Wirel. Commun. Netw., 2012 (2012) 1-11.
[62]
K. Kenda, C. Fortuna, A. Moraru, D. Mladenić, B. Fortuna, M. Grobelnik, Mashups for the web of things, in: Semantic Mashups, Springer, 2013, pp. 145-169.
[63]
Evrythng. http://www.evrythng.com/
[64]
Thingworx. http://www.thingworx.com/
[65]
Alexa. http://www.axeda.com/
[66]
BUGswarm. http://developer.bugswarm.net/
[67]
Carriots. https://www.carriots.com/
[68]
Etherios. http://www.etherios.com/products/devicecloud/
[69]
Grovestreams. https://grovestreams.com/
[70]
Nimbits. http://www.nimbits.com/
[71]
Open. Sen.se. http://open.sen.se/
[72]
Paraimpu. http://paraimpu.crs4.it/
[73]
Sensinode. http://www.sensinode.com/
[74]
SensorCloud. http://www.sensorcloud.com/
[75]
Thinkspeak. https://www.thingspeak.com/
[76]
Xively. https://xively.com/
[77]
Yaler. https://yaler.net/
[78]
Programmableweb. http://www.programmableweb.com/
[79]
N. Milanovic, M. Malek, Current solutions for web service composition, IEEE Internet Comput., 8 (2004) 51-59.
[80]
D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, R. Richardson, Spitfire: toward a semantic web of things, IEEE Commun. Mag., 49 (2011) 40-48.
[81]
A. Schmidt, Ubiquitous Computing-Computing in Context, Lancaster University, 2003.

Cited By

View all
  • (2022)Enterprise service composition models in IoT context: solutions comparisonThe Journal of Supercomputing10.1007/s11227-021-03873-778:2(2015-2042)Online publication date: 1-Feb-2022
  • (2021)Integrated Service Composition Approach Based on Transparent Access to Heterogeneous IoT Networks Using Multiple Service ProvidersMobile Information Systems10.1155/2021/55906052021Online publication date: 1-Jan-2021
  • (2021)Integration of ontologies to support Control as a Service in an Industry 4.0 contextService Oriented Computing and Applications10.1007/s11761-021-00317-115:2(127-140)Online publication date: 1-Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Standards & Interfaces
Computer Standards & Interfaces  Volume 43, Issue C
January 2016
116 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 January 2016

Author Tags

  1. Internet of Things
  2. Service composition
  3. Smart object

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Enterprise service composition models in IoT context: solutions comparisonThe Journal of Supercomputing10.1007/s11227-021-03873-778:2(2015-2042)Online publication date: 1-Feb-2022
  • (2021)Integrated Service Composition Approach Based on Transparent Access to Heterogeneous IoT Networks Using Multiple Service ProvidersMobile Information Systems10.1155/2021/55906052021Online publication date: 1-Jan-2021
  • (2021)Integration of ontologies to support Control as a Service in an Industry 4.0 contextService Oriented Computing and Applications10.1007/s11761-021-00317-115:2(127-140)Online publication date: 1-Jun-2021
  • (2021)Composing WoT services with uncertain and correlated dataComputing10.1007/s00607-020-00879-6103:7(1501-1517)Online publication date: 1-Jul-2021
  • (2021)A fog‐based fault‐tolerant and QoE‐aware service composition in smart citiesTransactions on Emerging Telecommunications Technologies10.1002/ett.432632:11Online publication date: 9-Nov-2021
  • (2019)Composing WoT services with uncertain dataFuture Generation Computer Systems10.1016/j.future.2019.07.048101:C(940-950)Online publication date: 1-Dec-2019
  • (2019)SECoGService Oriented Computing and Applications10.1007/s11761-019-00254-013:1(81-94)Online publication date: 1-Mar-2019
  • (2018)A flexible data acquisition system for storing the interactions on mashup user interfacesComputer Standards & Interfaces10.1016/j.csi.2018.02.00259:C(10-34)Online publication date: 1-Aug-2018
  • (2017)A framework for MDE of IoT-based manufacturing cyber-physical systemsProceedings of the Seventh International Conference on the Internet of Things10.1145/3131542.3131554(1-8)Online publication date: 22-Oct-2017
  • (2017)Internet of things (IoT)Proceedings of the 1st International Conference on Internet of Things and Machine Learning10.1145/3109761.3109768(1-12)Online publication date: 17-Oct-2017
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media