Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A survey on face detection in the wild

Published: 01 September 2015 Publication History

Abstract

We present a comprehensive and survey for face detection 'in-the-wild'.We critically describe the advances in the three main families of algorithms.We comment on the performance of the state-of-the-art in the current benchmarks.We outline future research avenues on the topic and beyond. Face detection is one of the most studied topics in computer vision literature, not only because of the challenging nature of face as an object, but also due to the countless applications that require the application of face detection as a first step. During the past 15years, tremendous progress has been made due to the availability of data in unconstrained capture conditions (so-called 'in-the-wild') through the Internet, the effort made by the community to develop publicly available benchmarks, as well as the progress in the development of robust computer vision algorithms. In this paper, we survey the recent advances in real-world face detection techniques, beginning with the seminal Viola-Jones face detector methodology. These techniques are roughly categorized into two general schemes: rigid templates, learned mainly via boosting based methods or by the application of deep neural networks, and deformable models that describe the face by its parts. Representative methods will be described in detail, along with a few additional successful methods that we briefly go through at the end. Finally, we survey the main databases used for the evaluation of face detection algorithms and recent benchmarking efforts, and discuss the future of face detection.

References

[1]
W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, Face recognition: a literature survey, ACM Comput. Surv. (CSUR), 35 (2003) 399-458.
[2]
Z. Kalal, K. Mikolajczyk, J. Matas, Face-tld: tracking-learning-detection applied to faces, in: 17th IEEE International Conference on Image Processing (ICIP), 2010, IEEE, 2010, pp. 3789-3792.
[3]
M. Pantic, L.J.M. Rothkrantz, Automatic analysis of facial expressions: the state of the art, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000) 1424-1445.
[4]
N. Kumar, A.C. Berg, P.N. Belhumeur, S.K. Nayar, Attribute and simile classifiers for face verification, in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009, pp. 365-372.
[5]
Y. Fu, G. Guo, T.S. Huang, Age synthesis and estimation via faces: a survey, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 1955-1976.
[6]
A. Laurentini, A. Bottino, Computer analysis of face beauty: a survey, in: Computer Vision and Image Understanding.
[7]
Y. Wang, L. Zhang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, D. Samaras, Face relighting from a single image under arbitrary unknown lighting conditions, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 1968-1984.
[8]
V. Blanz, T. Vetter, A morphable model for the synthesis of 3d faces, in: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., 1999, pp. 187-194.
[9]
I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, S.M. Seitz, Exploring photobios, in: ACM Transactions on Graphics (TOG), vol. 30, ACM, 2011, pp. 61.
[10]
A. Robotics, Nao Robot. <http://www.aldebaran.com/en> (cited August 2014).
[11]
W.W. Bledsoe, H. Chan, A Man-Machine Facial Recognition System-Some Preliminary Results, Panoramic Research, Inc, Palo Alto, California., Technical Report PRI A 19, 1965, p. 1965.
[12]
W. Bledsoe, Man-Machine Facial Recognition, Rep. PRi 22.
[13]
T. Sakai, M. Nagao, T. Kanade, Computer Analysis and Classification of Photographs of Human Faces, Kyoto University, 1972.
[14]
M.A. Fischler, R.A. Elschlager, The representation and matching of pictorial structures, IEEE Trans. Comput., 22 (1973) 67-92.
[15]
M.-H. Yang, D.J. Kriegman, N. Ahuja, Detecting faces in images: a survey, IEEE Trans. PAMI, 24 (2002) 34-58.
[16]
E. Hjelmas, B.K. Low, Face detection: a survey, Comput. Vis. Image Underst., 83 (2001) 236-274.
[17]
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proc. of CVPR, 2001.
[18]
D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 60 (2004) 91-110.
[19]
N. Dalal, B. Triggs, Histogram of oriented gradients for human detection, in: Proc. of CVPR, 2005.
[20]
T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. PAMI, 24 (2002) 971-987.
[21]
T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: Proc. of ECCV, 2004.
[22]
B. Jun, I. Choi, D. Kim, Local transform features and hybridization for accurate face and human detection, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1423-1436.
[23]
H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features (surf), Comput. Vis. Image Und., 110 (2008) 346-359.
[24]
E. Tola, V. Lepetit, P. Fua, Daisy: an efficient dense descriptor applied to wide-baseline stereo, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 815-830.
[25]
P. Dollar, Z. Tu, P. Perona, S. Belongie, Integral channel features, in: BMVC, vol. 2, 2009, p. 5.
[26]
M. Mathias, R. Benenson, M. Pedersoli, L.V. Gool, Face detection without bells and whistles, in: ECCV, 2014.
[27]
M. Everingham, S.A. Eslami, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The pascal visual object classes challenge-a retrospective, Int. J. Comput. Vision.
[28]
M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The pascal visual object classes (voc) challenge, Int. J. Comput. Vis., 88 (2010) 303-338.
[29]
G.B. Huang, R. Ramesh, T. Berg, E. Learned-Miller, Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments., Tech. rep., University of Massachusetts, Amherst, Technical Report 07-49, 2007.
[30]
V. Jain, E. Learned-Miller, FDDB: A Benchmark for Face Detection in Unconstrained Settings, Tech. rep., University of Massachusetts, Amherst, 2010.
[31]
Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in: Computational Learning Theory, Springer, 1995, pp. 23-37.
[32]
C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995) 273-297.
[33]
I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector machine learning for interdependent and structured output spaces, in: Proceedings of the Twenty-First International Conference on Machine Learning, ACM, 2004, pp. 104.
[34]
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097-1105.
[35]
P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 1627-1645.
[36]
G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, O'Reilly Media, Inc., 2008.
[37]
R.B. Girshick, P.F. Felzenszwalb, D. McAllester, Discriminatively Trained Deformable Part Models, Release 5. <http://people.cs.uchicago.edu/rbg/latent-release5/>.
[38]
Y. Jia, Caffe: An Open Source Convolutional Architecture for Fast Feature Embedding, 2013. <http://caffe.berkeleyvision.org/>.
[39]
P. Viola, M.J. Jones, Robust real-time face detection, Int. J. Comput. Vis., 57 (2004) 137-154.
[40]
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998) 2278-2324.
[41]
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. <1311.2524>.
[42]
C. Zhang, Z. Zhang, Improving multiview face detection with multi-task deep convolutional neural networks, in: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2014, pp. 1036-1041.
[43]
H. Li, Z. Lin, J. Brandt, X. Shen, G. Hua, Efficient boosted exemplar-based face detection, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014.
[44]
X. Shen, Z. Lin, J. Brandt, Y. Wu, Detecting and aligning faces by image retrieval, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3460-3467.
[45]
B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved categorization and segmentation, Int. J. Comput. Vis., 77 (2008) 259-289.
[46]
D.H. Ballard, Generalizing the hough transform to detect arbitrary shapes, Pattern Recogn., 13 (1981) 111-122.
[47]
P.F. Felzenszwalb, D.P. Huttenlocher, Pictorial structures for object recognition, Int. J. Comput. Vision, 61 (2005) 55-79.
[48]
X. Zhu, D. Ramanan, Face, detection pose estimation, and landmark localization in the wild, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012, pp. 2879-2886.
[49]
H. Schneiderman, T. Kanade, Object detection using the statistics of parts, Int. J. Comput. Vision, 56 (2004) 151-177.
[50]
K. Mikolajczyk, C. Schmid, A. Zisserman, Human detection based on a probabilistic assembly of robust part detectors, in: Proc. of ECCV, 2004.
[51]
D. Chen, S. Ren, Y. Wei, X. Cao, J. Sun, Joint cascade face detection and alignment, in: European Conference on Computer Vision (ECCV) 2014, 2014.
[52]
C. Zhang, Z. Zhang, A Survey of Recent Advances in Face Detection, Tech. Rep., Microsoft Research, 2010.
[53]
F. Crow, Summed-area tables for texture mapping, in: Proc. of SIGGRAPH, vol. 18, 1984, pp. 207-212.
[54]
R. Meir, G. Rätsch, An introduction to boosting and leveraging, in: Advanced Lectures on Machine Learning, Springer-Verlag, Berlin Heidelberg, 2003, pp. 118-183.
[55]
J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: A Statistical View of Boosting, Tech. Rep., Dept. of Statistics, Stanford University, 1998.
[56]
Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in: European Conf. on Computational Learning Theory, 1994.
[57]
Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55 (1997) 119-139.
[58]
R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, Mach. Learn., 37 (1999) 297-336.
[59]
S. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, H. Shum, Statistical learning of multi-view face detection, in: Proc. of ECCV, 2002.
[60]
C. Bishop, P. Viola, Learning and vision: discriminative methods, in: ICCV Course on Learning and Vision, 2003.
[61]
B. Wu, H. Ai, C. Huang, S. Lao, Fast rotation invariant multi-view face detection based on real adaboost, in: Proc. of IEEE Automatic Face and Gesture Recognition, 2004.
[62]
T. Mita, T. Kaneko, O. Hori, Joint Haar-Like Features for Face Detection, in: Proc. of ICCV, 2005.
[63]
R. Lienhart, J. Maydt, An Extended Set of Haar-Like Features for Rapid Object Detection, in: Proc. of ICIP, 2002.
[64]
M. Jones, P. Viola, Fast Multi-View Face Detection, Tech. Rep., Mitsubishi Electric Research Laboratories, TR2003-96, 2003.
[65]
M. Jones, P. Viola, D. Snow, Detecting Pedestrians Using Patterns of Motion and Appearance, Tech. Rep., Mitsubishi Electric Research Laboratories, TR2003-90, 2003.
[66]
S.C. Brubaker, J. Wu, J. Sun, M.D. Mullin, J.M. Rehg, On the Design of Cascades of Boosted Ensembles for Face Detection, Tech. Rep., Georgia Institute of Technology, GIT-GVU-05-28, 2005.
[67]
C. Huang, H. Ai, Y. Li, S. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proc. of ICCV, 2005.
[68]
R. Xiao, H. Zhu, H. Sun, X. Tang, Dynamic cascades for face detection, in: Proc. of ICCV, 2007.
[69]
B. Fröba, A. Ernst, Face detection with the modified census transform, in: IEEE Intl. Conf. on Automatic Face and Gesture Recognition, 2004.
[70]
G. Zhang, X. Huang, S.Z. Li, Y. Wang, X. Wu, Boosting local binary pattern (LBP)-based face recognition, in: Proc. Advances in Biometric Person Authentication, 2004.
[71]
H. Jin, Q. Liu, H. Lu, X. Tong, Face detection using improved LBP under bayesian framework, in: Third Intl. Conf. on Image and Grahics (ICIG), 2004.
[72]
L. Zhang, R. Chu, S. Xiang, S. Liao, S. Z. Li, Face Detection Based on Multi-Block LBP Representation, 2007.
[73]
S. Yan, S. Shan, X. Chen, W. Gao, Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proc. of CVPR, 2008.
[74]
C. Liu, H.-Y. Shum, Kullback-Leibler boosting, in: Proc. Of CVPR, 2003.
[75]
J. Meynet, V. Popovici, J.-P. Thiran, Face detection with boosted gaussian features, Pattern Recogn., 40 (2007) 2283-2291.
[76]
X. Chen, L. Gu, S.Z. Li, H.-J. Zhang, Learning representative local features for face detection, in: Proc. of CVPR, 2001.
[77]
P. Wang, Q. Ji, Learning discriminant features for multi-view face and eye detection, in: Proc. of CVPR, 2005.
[78]
S. Baluja, M. Sahami, H.A. Rowley, Efficient face orientation discrimination, in: Proc. of ICIP, 2004.
[79]
Y. Abramson, B. Steux, YEF¿ real-time object detection, in: International Workshop on Automatic Learning and Real-Time, 2005.
[80]
K. Levi, Y. Weiss, Learning object detection from a small number of examples: The importance of good features, in: Proc. of CVPR, 2004.
[81]
Q. Zhu, S. Avidan, M.-C. Yeh, K.-T. Cheng, Fast human detection using a cascade of histograms of oriented gradients, in: Proc. of CVPR, 2006.
[82]
H. Grabner, H. Bischof, On-line boosting and vision, in: Proc. of CVPR, 2006.
[83]
F. Suard, A. Rakotomamonjy, A. Bensrhair, A. Broggi, Pedestrian detection using infrared images and histograms of oriented gradients, in: IEEE Intelligent Vehicles Symposium, 2006.
[84]
I. Laptev, Improvements of object detection using boosted histograms, in: British Machine Vision Conference, 2006.
[85]
M. Enzweiler, D.M. Gavrila, Monocular pedestrian detection: survey and experiments, IEEE Trans. PAMI, 31 (2009) 2179-2195.
[86]
C.A. Waring, X. Liu, Face detection using spectral histograms and SVMs, IEEE Trans. Systems Man Cybern. - Part B: Cybern., 35 (2005) 467-476.
[87]
H. Zhang, W. Gao, X. Chen, D. Zhao, Object detection using spatial histogram features, Image Vis. Comput., 24 (2006) 327-341.
[88]
X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proc. of ICCV, 2009.
[89]
O. Tuzel, F. Porikli, P. Meer, Region covariance: A fast descriptor for detection and classification, in: Proc. of ECCV, 2006.
[90]
C. Huang, H. Ai, Y. Li, S. Lao, Learning sparse features in granular space for multi-view face detection, in: Intl. Conf. on Automatic Face and Gesture Recognition, 2006.
[91]
J. Yuan, J. Luo, Y. Wu, Mining compositional features for boosting, in: Proc. of CVPR, 2008.
[92]
F. Han, Y. Shan, H.S. Sawhney, R. Kumar, Discovering class specific composite features through discriminative sampling with Swendsen-Wang cut, in: Proc. of CVPR, 2008.
[93]
X. Liu, T. Yu, Gradient feature selection for online boosting, in: Proc. of ICCV, 2007.
[94]
A. Opelt, A. Pinz, A. Zisserman, A boundary-fragment-model for object detection, in: Proc. of CVPR, 2006.
[95]
J. Shotton, A. Blake, R. Cipolla, Contour-based learning for object detection, in: Proc. of ICCV, 2005.
[96]
B. Wu, R. Nevatia, Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors, in: Proc. of ICCV, 2005.
[97]
P. Sabzmeydani, G. Mori, Detecting pedestrians by learning shapelet features, in: Proc. of CVPR, 2007.
[98]
B. Wu, R. Nevatia, Simultaneous object detection and segmentation by boosting local shape feature based classifier, in: Proc. of CVPR, 2007.
[99]
W. Gao, H. Ai, S. Lao, Adaptive contour features in oriented granular space for human detection and segmentation, in: Proc. of CVPR, 2009.
[100]
M. Köstinger, P. Wohlhart, P.M. Roth, H. Bischof, Robust face detection by simple means.
[101]
R. Benenson, M. Mathias, T. Tuytelaars, L. Van Gool, Seeking the strongest rigid detector, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3666-3673.
[102]
J. Li, T. Wang, Y. Zhang, Face detection using surf cascade, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, 2011, pp. 2183-2190.
[103]
J. Li, Y. Zhang, Learning surf cascade for fast and accurate object detection, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 3468-3475.
[104]
F. Porikli, Integral histogram: a fast way to extract histograms in cartesian spaces, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 1, IEEE, 2005, pp. 829-836.
[105]
B. Yang, J. Yan, Z. Lei, S.Z. Li, Aggregate channel features for multi-view face detection, in: 2014 IEEE International Joint Conference on Biometrics (IJCB), IEEE, 2014, pp. 1-8.
[106]
L. Bourdev, J. Brandt, Robust object detection via soft cascade, in: Proc. of CVPR, 2005.
[107]
R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection, Tech. Rep., Microprocessor Research Lab, Intel Labs, 2002.
[108]
P. Pudil, J. Novovicova, J. Kittler, Floating search methods in feature selection, Pattern Recogn. Lett., 15 (1994) 1119-1125.
[109]
J.-S. Jang, J.-H. Kim, Fast and robust face detection using evolutionary pruning, IEEE Trans. Evol. Comput., 12 (2008) 562-571.
[110]
R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proc. of ICCV, 2003.
[111]
P. Viola, M. Jones, Fast and robust classification using asymmetric AdaBoost and a detector cascade, in: Proc. of NIPS, 2002.
[112]
M.-T. Pham, T.-J. Cham, Online learning asymmetric boosted classifiers for object detection, in: Proc. of CVPR, 2007.
[113]
H. Masnadi-Shirazi, N. Vasconcelos, Asymmetric boosting, in: Proc. of ICML, 2007.
[114]
L. Mason, J. Baxter, P. Bartlett, M. Frean, Boosting algorithms as gradient descent, in: Proc. of NIPS, 2000.
[115]
H. Masnadi-Shirazi, N. Vasconcelos, High detection-rate cascades for real-time object detection, in: Proc. of ICCV, 2007.
[116]
J. Wu, S.C. Brubaker, M.D. Mullin, J.M. Rehg, Fast Asymmetric Learning for Cascade Face Detection, Tech. Rep., Georgia Institute of Technology, GIT-GVU-05-27, 2005.
[117]
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons Inc., 2001.
[118]
J. Sochman, J. Matas, Waldboost - learning for time constrained sequential detection, in: Proc. of CVPR, 2005.
[119]
A. Wald, Sequential Analysis, Dover, 1947.
[120]
H. Luo, Optimization design of cascaded classifiers, in: Proc. of CVPR, 2005.
[121]
C. Zhang, P. Viola, Multiple-instance pruning for learning efficient cascade detectors, in: Proc. of NIPS, 2007.
[122]
B. McCane, K. Novins, On training cascade face detectors, in: Image and Vision Computing, 2003.
[123]
J. Wu, J.M. Rehg, M.D. Mullin, Learning a rare event detection cascade by direct feature selection, in: Proc. of NIPS, vol. 16, 2004.
[124]
A.R. Webb, Statistical Pattern Recognition, Oxford University Press, 1999.
[125]
M.-T. Pham, T.-J. Cham, Fast training and selection of haar features during statistics in boosting-based face detection, in: Proc. of ICCV, 2007.
[126]
F. Porikli, Integral histogram: a fastway to extract histograms in cartesian spaces, in: Proc. of CVPR, 2005.
[127]
H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proc. of CVPR, 2004.
[128]
M.-T. Pham, T.-J. Cham, Detection caching for faster object detection, in: Proc. of CVPR, 2005.
[129]
M.M. Campos, G.A. Carpenter, S-tree: self-organizing trees for data clustering and online vector quantization, Neural Networks, 14 (2001) 505-525.
[130]
B. Fröba, A. Ernst, Fast frontal-view face detection using a multi-path decision tree, in: Proc. of Audio- and Video-based Biometric Person Authentication, 2003.
[131]
Y.-Y. Lin, T.-L. Liu, Robust face detection with multi-class boosting, in: Proc. of CVPR, 2005.
[132]
A. Torralba, K.P. Murphy, W.T. Freeman, Sharing features: Efficient boosting procedures for multiclass object detection, in: Proc. of CVPR, 2004.
[133]
E. Seemann, B. Leibe, B. Schiele, Multi-aspect detection of articulated objects, in: Proc. of CVPR, 2006.
[134]
B. Leibe, E. Seemann, B. Schiele, Pedestrian detection in crowded scenes, in: Proc. of CVPR, 2005.
[135]
Y. Shan, F. Han, H.S. Sawhney, R. Kumar, Learning exemplar-based categorization for the detection of multi-view multi-pose objects, in: Proc. of CVPR, 2006.
[136]
Z. Tu, Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering, in: Proc. of ICCV, 2005.
[137]
B. Wu, R. Nevatia, Cluster boosted tree classifier for multi-view, multi-pose object detection, in: Proc. of ICCV, 2007.
[138]
T.-K. Kim, R. Cipolla, MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features, in: Proc. of NIPS, 2008.
[139]
P. Viola, J.C. Platt, C. Zhang, Multiple instance boosting for object detection, in: Proc. of NIPS, vol. 18, 2005.
[140]
B. Babenko, P. Dollár, Z. Tu, S. Belongie, Simultaneous learning and alignment: multi-instance and multi-pose learning, in: Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, 2008.
[141]
C. Zhang, Z. Zhang, Winner-Take-All Multiple Category Boosting for Multi-View Face Detection, Tech. Rep., Microsoft Research MSR-TR-2009-190, 2009.
[142]
H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face detection, in: Proc. of CVPR, 1996.
[143]
D. Roth, M.-H. Yang, N. Ahuja, A SNoW-based face detector, in: Proc. of NIPS, 2000.
[144]
R. Féraud, O.J. Bernier, J.-E. Viallet, M. Collobert, A fast and accurate face detector based on neural networks, IEEE Trans. PAMI, 23 (2001) 42-53.
[145]
C. Garcia, M. Delakis, Convolutional face finder: a neural architecture for fast and robust face detection, IEEE Trans. PAMI, 26 (2004) 1408-1423.
[146]
M. Osadchy, Y.L. Cun, M.L. Miller, Synergistic face detection and pose estimation with energy-based models, J. Mach. Learn. Res., 8 (2007) 1197-1215.
[147]
Y.-N. Chen, C.-C. Han, C.-T. Wang, B.-S. Jeng, K.-C. Fan, A cnn-based face detector with a simple feature map and a coarse-to-fine classifier, IEEE Trans. Pattern Anal. Mach. Intell. (2009).
[148]
V. Jain, E.G. Learned-Miller, Fddb: A Benchmark for Face Detection in Unconstrained Settings, UMass Amherst Technical Report.
[149]
J. Bruna, S. Mallat, Invariant scattering convolution networks, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1872-1886.
[150]
D. Keren, M. Osadchy, C. Gotsman, Antifaces: a novel fast method for image detection, IEEE Trans. PAMI, 23 (2001) 747-761.
[151]
C. Liu, A bayesian discriminating features method for face detection, IEEE Trans. PAMI, 25 (2003) 725-740.
[152]
N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and other Kernel-Based Learning Methods, Cambridge University Press, 2000.
[153]
E. Osuna, R. Freund, F. Girosi, Training support vector machines: An application to face detection, in: Proc. of CVPR, 1997.
[154]
B. Heisele, T. Poggio, M. Pontil, Face Detection in Still Gray Images, Tech. Rep., Center for Biological and Computational Learning, MIT, A.I. Memo 1687, 2000.
[155]
S. Romdhani, P. Torr, B. Schölkopf, A. Blake, Computationally efficient face detection, in: Proc. of ICCV, 2001.
[156]
M. Rätsch, S. Romdhani, T. Vetter, Efficient face detection by a cascaded support vector machine using haar-like features, in: Pattern Recognition Symposium, 2004.
[157]
B. Heisele, T. Serre, S. Prentice, T. Poggio, Hierarchical classification and feature reduction for fast face detection with support vector machines, Pattern Recogn., 36 (2003) 2007-2017.
[158]
Y. Li, S. Gong, H. Liddell, Support vector regression and classification based multi-view face detection and recognition, in: International Conference on Automatic Face and Gesture Recognition, 2000.
[159]
H.A. Rowley, S. Baluja, T. Kanade, Rotation Invariant Neural Network-Based Face Detection, Tech. Rep., School of Coomputer Science, Carnegie Mellow Univ., CMU-CS-97-201, 1997.
[160]
J. Yan, S. Li, S. Zhu, H. Zhang, Ensemble SVM Regression Based Multi-View Face Detection System, Tech. Rep., Microsoft Research, MSR-TR-2001-09, 2001.
[161]
P. Wang, Q. Ji, Multi-view face detection under complex scene based on combined SVMs, in: Proc. of ICPR, 2004.
[162]
K. Hotta, View independent face detection based on combination of local and global kernels, in: International Conference on Computer Vision Systems, 2007.
[163]
J. Yan, X. Zhang, Z. Lei, D. Yi, S.Z. Li, Structural models for face detection, in: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), IEEE, 2013, pp. 1-6.
[164]
J. Yan, X. Zhang, Z. Lei, S.Z. Li, Face detection by structural models, Image Vis. Comput., 32 (2014) 790-799.
[165]
P.F. Felzenszwalb, R.B. Girshick, D. McAllester, Cascade object detection with deformable part models, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2241-2248.
[166]
I. Kokkinos, Rapid deformable object detection using dual-tree branch-and-bound, in: Advances in Neural Information Processing Systems, 2011, pp. 2681-2689.
[167]
C. Dubout, F. Fleuret, Exact acceleration of linear object detectors, in: Computer Vision-ECCV 2012, Springer, 2012, pp. 301-311.
[168]
J. Yan, Z. Lei, L. Wen, S.Z. Li, The fastest deformable part model for object detection, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014.
[169]
J. Yan, X. Zhang, Z. Lei, S.Z. Li, Real-time high performance deformable model for face detection in the wild, in: 2013 International Conference on Biometrics (ICB), IEEE, 2013, pp. 1-6.
[170]
C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Theory, 14 (1968) 462-467.
[171]
P.F. Felzenszwalb, D.P. Huttenlocher, Distance transforms of sampled functions, Theory Comput., 8 (2012) 415-428.
[172]
J.M. Saragih, S. Lucey, J.F. Cohn, Deformable model fitting by regularized landmark mean-shift, Int. J. Comput. Vision, 91 (2011) 200-215.
[173]
T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 681-685.
[174]
S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines for multiple-instance learning, in: Advances in Neural Information Processing Systems, 2002, pp. 561-568.
[175]
T. Joachims, T. Finley, C.-N.J. Yu, Cutting-plane training of structural SVMs, Mach. Learn., 77 (2009) 27-59.
[176]
Y. Yang, D. Ramanan, Articulated pose estimation with flexible mixtures-of-parts, in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 1385-1392.
[177]
E. Antonakos, J. Alabort-i Medina, G. Tzimiropoulos, S. Zafeiriou, Hog active appearance models, in: ICIP, 2014.
[178]
G. Tzimiropoulos, J. Alabort-i Medina, S. Zafeiriou, M. Pantic, Generic active appearance models revisited, in: ACCV 2012, Springer, 2012, pp. 650-663.
[179]
X. Xiong, F. De la Torre, Supervised descent method and its applications to face alignment, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 532-539.
[180]
A.G. Gray, A.W. Moore, Nonparametric density estimation: toward computational tractability, in: SDM, SIAM, 2003, pp. 203-211.
[181]
P. Dollár, R. Appel, W. Kienzle, Crosstalk cascades for frame-rate pedestrian detection, in: Computer Vision-ECCV 2012, Springer, 2012, pp. 645-659.
[182]
H. Schneiderman, Learning a restricted bayesian network for object detection, in: Proc. of CVPR, 2004.
[183]
M.C. Nechyba, L. Brandy, H. Schneiderman, Pittpatt face detection and tracking for the CLEAR 2007 evaluation, in: Classification of Events, Activities and Relations Evaluation and Workshop, 2007.
[184]
A. Mohan, C. Papageorgiou, T. Poggio, Example-based object detection in images by components, IEEE Trans. PAMI, 23 (2001) 349-361.
[185]
S.M. Bileschi, B. Heisele, Advances in component-based face detection, in: Pattern Recognition with Support Vector Machines Workshop, 2002.
[186]
B. Heisele, T. Serre, T. Poggio, A component-based framework for face detection and identification, Int. J. Comput. Vision, 74 (2007) 167-181.
[187]
P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, W. Worek, Overview of the face recognition grand challenge, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 1, IEEE, 2005, pp. 947-954.
[188]
P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000) 1090-1104.
[189]
G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, et al., Labeled faces in the wild: a database for studying face recognition in unconstrained environments, in: Workshop on Faces in'Real-Life'Images: Detection, Alignment, and Recognition, 2008.
[190]
K. Messer, J. Matas, J. Kittler, J. Luettin, G. Maitre, Xm2vtsdb: the extended m2vts database, in: Second International Conference on Audio and Video-Based Biometric Person Authentication, vol. 964, Citeseer, 1999, pp. 965-966.
[191]
T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression database, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003) 1615-1618.
[192]
R. Gross, Face databases, in: Handbook of Face Recognition, Springer, 2005, pp. 301-327.
[193]
K. Sung, T. Poggio, Example-based learning for view-based face detection, IEEE Trans. PAMI, 20 (1998) 39-51.
[194]
A.C. Loui, C.N. Judice, S. Liu, An image database for benchmarking of automatic face detection and recognition algorithms, in: 1998 International Conference on Image Processing, 1998, ICIP 98, Proceedings, vol. 1, IEEE, 1998, pp. 146-150.
[195]
H. Rowley, S. Baluja, T. Kanade, Neural network-based face detection, IEEE Trans. PAMI, 20 (1998) 23-38.
[196]
H. Schneiderman, T. Kanade, A statistical model for 3d object detection applied to faces and cars, in: Proc. of CVPR, 2000.
[197]
C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, 300 faces in-the-wild challenge: the first facial landmark localization challenge, in: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, 2013, pp. 397-403.
[198]
M. Kostinger, P. Wohlhart, P.M. Roth, H. Bischof, Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, 2011, pp. 2144-2151.
[199]
P.N. Belhumeur, D.W. Jacobs, D. Kriegman, N. Kumar, Localizing parts of faces using a consensus of exemplars, in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 545-552.
[200]
V. Le, J. Brandt, Z. Lin, L. Bourdev, T.S. Huang, Interactive facial feature localization, in: ECCV 2012, Springer, 2012, pp. 679-692.
[201]
Fddb: Face Detection Data set and Benchmark. <http://vis-www.cs.umass.edu/fddb/>.
[202]
V. Jain, E. Learned-Miller, Online domain adaptation of a pre-trained cascade of classifiers, in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 577-584.
[203]
H. Li, G. Hua, Z. Lin, J. Brandt, J. Yang, Probabilistic elastic part model for unsupervised face detector adaptation, in: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013, pp. 793-800.
[204]
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q.V. Le, et al., Large scale distributed deep networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1223-1231.
[205]
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 580-587.
[206]
B. Alexe, T. Deselaers, V. Ferrari, Measuring the objectness of image windows, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012) 2189-2202.
[207]
A.J. O'Toole, P.J. Phillips, F. Jiang, J. Ayyad, N. Pénard, H. Abdi, Face recognition algorithms surpass humans matching faces over changes in illumination, IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007) 1642-1646.
[208]
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701-1708.
[209]
W.J. Scheirer, S.E. Anthony, K. Nakayama, D.D. Cox, Perceptual annotation: Measuring human vision to improve computer vision, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014) 1679-1686.
[210]
D. Hoiem, Y. Chodpathumwan, Q. Dai, Diagnosing error in object detectors, in: ECCV 2012, Springer, 2012, pp. 340-353.
[211]
S. Bengio, L. Deng, H. Larochelle, H. Lee, R. Salakhutdinov, Guest editors' introduction: special section on learning deep architectures, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1795-1797.
[212]
P.-A. Savalle, S. Tsogkas, G. Papandreou, I. Kokkinos, Deformable part models with cnn features, in: 3rd Parts and Attributes Workshop, ECCV, vol. 8.
[213]
R. Girshick, F. Iandola, T. Darrell, J. Malik, Deformable Part Models are Convolutional Neural Networks. <1409.5403>.
[214]
C. Galleguillos, S. Belongie, Context based object categorization: a critical survey, Comput. Vis. Image Und. (CVIU), 114 (2010) 712-722.
[215]
M. Yang, Y. Wu, G. Hua, Context-aware visual tracking, IEEE Trans. PAMI, 31 (2009) 1195-1209.
[216]
H. Kruppa, M.C. Santana, B. Schiele, Fast and robust face finding via local context, in: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), 2003.
[217]
Y. Dupuis, X. Savatier, J.-Y. Ertaud, P. Vasseur, Robust radial face detection for omnidirectional vision, IEEE Trans. Image Process., 22 (2013) 1808-1821.
[218]
K. Scherbaum, J. Petterson, R.S. Feris, V. Blanz, H.-P. Seidel, Fast face detector training using tailored views, in: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013, pp. 2848-2855.
[219]
C. Huang, H. Ai, T. Yamashita, S. Lao, M. Kawade, Incremental learning of boosted face detector, in: Proc. of ICCV, 2007.
[220]
C. Zhang, R. Hamid, Z. Zhang, Taylor expansion based classifier adaptation: application to person detection, in: Proc. of CVPR, 2008.

Cited By

View all
  • (2024)MMDataLoader: Reusing Preprocessed Data Among Concurrent Model Training TasksIEEE Transactions on Computers10.1109/TC.2023.333616173:2(510-522)Online publication date: 1-Feb-2024
  • (2024)Synchrony Between Facial Expressions and Heart Rate Variability During Game-Based Learning: Insights from Cross-Wavelet TransformationTechnology Enhanced Learning for Inclusive and Equitable Quality Education10.1007/978-3-031-72315-5_7(90-104)Online publication date: 16-Sep-2024
  • (2023)Inclusive Portraits: Race-Aware Human-in-the-Loop TechnologyProceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization10.1145/3617694.3623235(1-11)Online publication date: 30-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Vision and Image Understanding
Computer Vision and Image Understanding  Volume 138, Issue C
September 2015
125 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 September 2015

Author Tags

  1. Boosting
  2. Deep neural networks
  3. Deformable models
  4. Face detection
  5. Feature extraction

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)MMDataLoader: Reusing Preprocessed Data Among Concurrent Model Training TasksIEEE Transactions on Computers10.1109/TC.2023.333616173:2(510-522)Online publication date: 1-Feb-2024
  • (2024)Synchrony Between Facial Expressions and Heart Rate Variability During Game-Based Learning: Insights from Cross-Wavelet TransformationTechnology Enhanced Learning for Inclusive and Equitable Quality Education10.1007/978-3-031-72315-5_7(90-104)Online publication date: 16-Sep-2024
  • (2023)Inclusive Portraits: Race-Aware Human-in-the-Loop TechnologyProceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization10.1145/3617694.3623235(1-11)Online publication date: 30-Oct-2023
  • (2023)FaceWard: Face Anonymization in Group PhotosProceedings of the 25th International Conference on Mobile Human-Computer Interaction10.1145/3565066.3608249(1-4)Online publication date: 26-Sep-2023
  • (2023)A Softmax-Free Loss Function Based on Predefined Optimal-Distribution of Latent Features for Deep Learning ClassifierIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2022.321242633:3(1386-1397)Online publication date: 1-Mar-2023
  • (2023)Oppositional Grass Hopper Optimization with Fuzzy Classifier for Face Recognition from Video DatabaseWireless Personal Communications: An International Journal10.1007/s11277-023-10599-7132:3(1651-1680)Online publication date: 6-Sep-2023
  • (2023)Single sample face recognition using deep learning: a surveyArtificial Intelligence Review10.1007/s10462-023-10551-y56:Suppl 1(1063-1111)Online publication date: 15-Jul-2023
  • (2022)The Elements of End-to-end Deep Face Recognition: A Survey of Recent AdvancesACM Computing Surveys10.1145/350790254:10s(1-42)Online publication date: 13-Sep-2022
  • (2022)Co-Yudh: A Convolutional Neural Network (CNN)-Inspired Platform for COVID Handling and AwarenessSN Computer Science10.1007/s42979-022-01149-23:3Online publication date: 25-Apr-2022
  • (2022)A face detection ensemble to monitor the adoption of face masks inside the public transportation during the COVID-19 pandemicMultimedia Tools and Applications10.1007/s11042-022-12806-281:23(33689-33714)Online publication date: 1-Sep-2022
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media