Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An approximation algorithm for dissecting a rectangle into rectangles with specified areas

Published: 20 February 2007 Publication History

Abstract

Given a rectangle R with area @a and a set of n positive reals A={a"1,a"2,...,a"n} with @?"a"""i"@?"Aa"i=@a, we consider the problem of dissecting R into n rectangles r"i with area a"i(i=1,2,...,n) so that the set R of resulting rectangles minimizes an objective function such as the sum of the perimeters of the rectangles in R, the maximum perimeter of the rectangles in R, and the maximum aspect ratio of the rectangles in R, where we call the problems with these objective functions PERI-SUM, PERI-MAX and ASPECT-RATIO, respectively. We propose an O(nlogn) time algorithm that finds a dissection R of R that is a 1.25-approximate solution to PERI-SUM, a 23-approximate solution to PERI-MAX, and has an aspect ratio at most max{@r(R),3,1+max"i"="1","...","n"-"1a"i"+"1a"i}, where @r(R) denotes the aspect ratio of R.

References

[1]
Anjos, M.F. and Vannelli, A., A new mathematical-programming framework for facility-layout design. INFORMS J. Comput. v18. 111-118.]]
[2]
Bär, G. and Iturriaga, C., Rectangle packing in polynomial time. In: Proceedings of the Fifth Canadian Conference on Computational Geometry, pp. 455-460.]]
[3]
Beaumont, O., Boudet, V., Rastello, F. and Robert, Y., Matrix multiplication on heterogeneous platforms. IEEE Trans. Parallel and Distributed Systems. v12. 1033-1051.]]
[4]
Beaumont, O., Boudet, V., Rastello, F. and Robert, Y., Partitioning a square into rectangles: NP-completeness and approximation algorithms. Algorithmica. v34. 217-239.]]
[5]
Bose, P., Czyzowicz, J., Kranakis, E., Krizanc, D. and Lessard, D., Near optimal-partitioning of rectangles and prisms. In: Proceedings of the 11th Canadian Conference on Computational Geometry,]]
[6]
Bose, P., Czyzowicz, J. and Lessard, D., Cutting rectangles in equal area pieces. In: Proceedings of the 10th Canadian Conference on Computational Geometry, pp. 94-95.]]
[7]
Frederickson, G., Dissections Plane and Fancy. Cambridge University Press, Cambridge, MA.]]
[8]
Graham, R.L., Fault-free tilings of rectangles. In: Klarmer, D.A. (Ed.), The Mathematical Gardner, Wadsworth, Belmont, CA. pp. 120-126.]]
[9]
Gonzalez, T.F., Razzari, M., Shing, M.-T. and Zheng, S.-Q., On optimal guillotine partitions approximating optimal d-box partitions. Comput. Geometry. v4. 1-11.]]
[10]
Gonzalez, T.F. and Zheng, S.-Q., Improved bounds for rectangular and guillotine partitions. J. Symbolic Comput. v70. 591-610.]]
[11]
Itoh, T., Yamaguchi, Y., Ikehata, Y. and Kajinaga, Y., Hierarchical data visualization using a fast rectangle-packing algorithm. IEEE Trans. Visual. Comput. Graphics. v10. 302-313.]]
[12]
Khanna, S., Muthukrishnan, S. and Paterson, M., On approximating rectangle tiling and packing. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 384-393.]]
[13]
Kenyon, R., Tiling a rectangle with the fewest squares. J. Combin. Theory. vA-76. 272-291.]]
[14]
Kenyon, C. and Kenyon, R., Tiling a polygon with rectangles. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 610-619.]]
[15]
Kong, T.Y., Mount, D.M. and Roscoe, A.W., The decomposition of a rectangle into rectangles of minimal perimeter. SIAM J. Comput. v17. 1215-1231.]]
[16]
Kong, T.Y., Mount, D.M. and Wermann, M., The decomposition of a square into rectangles of minimal perimeter. Discrete Appl. Math. v16. 239-243.]]
[17]
A. Lingas, R.Y. Pinter, R.L. Rivest, A. Shamir, Minimum edge length partitioning of rectilinear polygons, Proceedings of 20th Annual Allerton Conference on Communication, Control, and Computing, 1982, pp. 53-63.]]
[18]
K. Lory, K. Paluch, Rectangle tiling, in: Proceedings of the APPROX2000, Lecture Notes in Computer Science, vol. 1913, Springer, Berlin, 2000, pp. 206-213.]]
[19]
Pan, P., Shi, W. and Liu, C.L., Area minimization for hierarchical floorplans. Algorithmica. v15. 550-571.]]
[20]
Stockmeyer, L., Optimal orientations of cells in slicing floorplan designs. Inform. and Control. v57. 91-101.]]

Cited By

View all
  • (2023)Metaheuristic for a soft-rectangle packing problem with guillotine constraintsProceedings of the 12th International Symposium on Information and Communication Technology10.1145/3628797.3628918(715-722)Online publication date: 7-Dec-2023
  • (2022)Visual variables and configuration of software mapsJournal of Visualization10.1007/s12650-022-00868-126:1(249-274)Online publication date: 16-Sep-2022
  • (2021)Processor-Aware Cache-Oblivious Algorithms✱Proceedings of the 50th International Conference on Parallel Processing10.1145/3472456.3472506(1-10)Online publication date: 9-Aug-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete Applied Mathematics
Discrete Applied Mathematics  Volume 155, Issue 4
February, 2007
159 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 20 February 2007

Author Tags

  1. Approximation algorithm
  2. Aspect ratio
  3. Dissection
  4. Divide-and-conquer
  5. Facility layout
  6. Floor plan
  7. NP-hard
  8. Rectangle

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Metaheuristic for a soft-rectangle packing problem with guillotine constraintsProceedings of the 12th International Symposium on Information and Communication Technology10.1145/3628797.3628918(715-722)Online publication date: 7-Dec-2023
  • (2022)Visual variables and configuration of software mapsJournal of Visualization10.1007/s12650-022-00868-126:1(249-274)Online publication date: 16-Sep-2022
  • (2021)Processor-Aware Cache-Oblivious Algorithms✱Proceedings of the 50th International Conference on Parallel Processing10.1145/3472456.3472506(1-10)Online publication date: 9-Aug-2021
  • (2020)Survey of treemap layout algorithmsProceedings of the 13th International Symposium on Visual Information Communication and Interaction10.1145/3430036.3430041(1-9)Online publication date: 8-Dec-2020
  • (2019)Layer based partition for matrix multiplication on heterogeneous mesh networksProceedings of the High Performance Computing Symposium10.5555/3338075.3338079(1-12)Online publication date: 29-Apr-2019
  • (2019)Recent Advances in Matrix Partitioning for Parallel Computing on Heterogeneous PlatformsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2018.285315130:1(218-229)Online publication date: 1-Jan-2019
  • (2019)On three soft rectangle packing problems with guillotine constraintsJournal of Global Optimization10.1007/s10898-019-00741-w74:1(45-62)Online publication date: 1-May-2019
  • (2018)Using Static Allocation Algorithms for Matrix Matrix Multiplication on Multicores and GPUsProceedings of the 47th International Conference on Parallel Processing10.1145/3225058.3225066(1-10)Online publication date: 13-Aug-2018
  • (2016)Cuboid Partitioning for Parallel Matrix Multiplication on Heterogeneous PlatformsProceedings of the 22nd International Conference on Euro-Par 2016: Parallel Processing - Volume 983310.1007/978-3-319-43659-3_13(171-182)Online publication date: 24-Aug-2016
  • (2009)Two algorithms for automatic page layout and possible applicationsMultimedia Tools and Applications10.1007/s11042-009-0267-y43:3(275-301)Online publication date: 1-Jul-2009
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media