Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Integer sequence discovery from small graphs

Published: 11 March 2016 Publication History

Abstract

We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work.

References

[1]
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Global Constraint Catalog, SICS Research Report, 2005.
[2]
Bela Bollobas, Modern Graph Theory, Springer, New York, 1998.
[3]
J.A. Bondy, Graph Theory, Springer, New York, 2008.
[4]
Ulrik Brandes, Patrick Kenis, Jürgen Lerner, Denise van Raaij, Network analysis of collaboration structure in Wikipedia, in: Proceedings of the 18th International Conference on World Wide Web, WWW'09, ACM, New York, NY, USA, 2009, pp. 731-740.
[5]
Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, Hadrien Mélot, House of graphs: A database of interesting graphs, Discrete Appl. Math., 161 (2013) 311-314. http://hog.grinvin.org/
[6]
Gunnar Brinkmann, Jan Goedgebeur, Jonas Hägglund, Klas Markström, Generation and properties of snarks, J. Combin. Theory Ser. B, 103 (2013) 468-488.
[7]
Gunnar Brinkmann, Jan Goedgebeur, Brendan D. McKay, Generation of cubic graphs, Discrete Math. Theor. Comput. Sci., 13 (2011) 69-80.
[8]
Gunnar Brinkmann, Jan Goedgebeur, Jan-Christoph Schlage-Puchta, Ramsey numbers R ( K 3, G ) for graphs of order 10, Electron. J. Combin., 19 (2012).
[9]
Andries E. Brouwer, Willem H. Haemers, Distance-Regular Graphs, Springer, 2012.
[10]
Tiago de Paula Peixoto, Graph-Tool Efficient Network Analysis, http://graph-tool.skewed.de, 2014. Software version: 2.2.31.
[11]
Massimo De Santo, Pasquale Foggia, Carlo Sansone, Mario Vento, A large database of graphs and its use for benchmarking graph isomorphism algorithms, Pattern Recognit. Lett., 24 (2003) 1067-1079.
[12]
Reinhard Diestel, Graph Theory, Springer, Heidelberg, New York, 2010.
[13]
Paul Erd's, Graph theory and probability, Canad. J. Math., 11 (1959) 34-38.
[14]
Hin Hark Gan, Daniela Fera, Julie Zorn, Nahum Shiffeldrim, Michael Tang, Uri Laserson, Namhee Kim, Tamar Schlick, RAG: RNA-As-Graphs database-concepts, analysis, and features, Bioinformatics, 20 (2004) 1285-1291. http://www.biomath.nyu.edu/?q=rag/home
[15]
Aric A. Hagberg, Daniel A. Schult, Pieter J. Swart, Exploring network structure, dynamics, and function using networkx, in: Proceedings of the 7th Python in Science Conference, 2008, pp. 11-15, Software Version: 1.9, https://networkx.github.io/.
[16]
Travis Hoppe, Anna Petrone, Simple connected graph invariants up to order ten, Aug. 2014, http://dx.doi.org/10.5281/zenodo.11280.
[17]
Travis Hoppe, Anna Petrone, Encyclopedia of Finite Graphs, Aug. 2014, http://dx.doi.org/10.5281/zenodo.11304.
[18]
Haruo Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn, 44 (1971) 2332-2339.
[19]
Mark Jerrum, Two-dimensional monomer-dimer systems are computationally intractable, J. Stat. Phys., 48 (1987) 121-134.
[20]
Tommi A. Junttila, Petteri Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in: ALENEX, vol. 7, SIAM, 2007, pp. 135-149.
[21]
Christian Laing, Segun Jung, Namhee Kim, Shereef Elmetwaly, Mai Zahran, Tamar Schlick, Predicting helical topologies in RNA junctions as tree graphs, PLoS One, 8 (2013) e71947.
[22]
Julian J. McAuley, Jure Leskovec, Discovering social circles in ego networks, ACM Trans. Knowl. Discov. Data, 8 (2014) 4.
[23]
Brendan McKay, Combinatorial data, http://cs.anu.edu.au/~bdm/data/.
[24]
Brendan D. McKay, Adolfo Piperno, Practical graph isomorphism, II, J. Symbolic. Comput., 60 (2014) 94-112.
[25]
Markus Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory, 30 (1999) 137-146.
[26]
Markus Meringer, Regular graphs. http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
[27]
Hadrien Mélot, Facet defining inequalities among graph invariants: The system GraPHedron, Discrete Appl. Math., 156 (2008) 1875-1891.
[28]
Stuart Mitchell, Michael O'Sullivan, Iain Dunning, PuLP: A linear Programming Toolkit for Python, 2011.
[29]
Gal Oestreicher-Singer, Arun Sundararajan, Linking network structure to ecommerce demand: Theory and evidence from Amazon.com's copurchase network, 2006.
[30]
Harry E. Pence, Antony Williams, ChemSpider: An online chemical information resource, J. Chem. Educ., 87 (2010) 1123-1124. http://www.chemspider.com
[31]
Ronald C. Read, Robin J. Wilson, An Atlas of Graphs, Clarendon Press, 1998.
[32]
Gordon Royle, Small graphs. http://staffhome.ecm.uwa.edu.au/~00013890/remote/graphs/
[33]
Joe Sawada, Generating rooted and free plane trees, ACM Trans. Algorithms, 2 (2006) 1-13.
[34]
Edward R. Scheinerman, Daniel H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Courier Dover Publications, 2011.
[35]
Neil J.A. Sloane, et al. The On-Line Encyclopedia of Integer Sequences, 2003, https://oeis.org/.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete Applied Mathematics
Discrete Applied Mathematics  Volume 201, Issue C
March 2016
249 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 11 March 2016

Author Tags

  1. Database
  2. Generator
  3. Graph
  4. Integer sequence
  5. Invariant

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media