Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The multi-terminal vertex separator problem: : Polyhedral analysis and Branch-and-Cut

Published: 15 March 2019 Publication History

Abstract

In this paper we consider a variant of the k-separator problem. Given a graph G = ( V ∪ T, E ) with V ∪ T the set of vertices, where T is a set of k terminals, the multi-terminal vertex separator problem consists in partitioning V ∪ T into k + 1 subsets { S, V 1, …, V k } such that there is no edge between two different subsets V i and V j, each V i contains exactly one terminal and the size of S is minimum. In this paper, we first show that the problem is NP-hard. Then we give two integer programming formulations for the problem. For one of these formulations, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the problem, along with an extensive computational study.

References

[1]
Ben-Ameur W., Didi Biha M., On the minimum cut separator problem, Networks 59 (1) (2012) 30–36.
[2]
Garg N., Vazirani V.V., Yannakakis M., Multiway cuts in node weighted graphs, J. Algorithms 50 (1) (2004) 49–61.
[3]
Marx D., Parameterized graph separation problems, Theoret. Comput. Sci. 351 (3) (2006) 394–406.
[4]
Xiao M., Simple and improved parameterized algorithms for multiterminal cuts, Theory Comput. Syst. 46 (4) (2010) 723–736.
[5]
Cunningham W.H., The optimal multiterminal cut problem, in: Reliability of Computer and Communication Networks, 1989, pp. 105–120.
[6]
Balas E., de Souza C.C., The vertex separator problem: a polyhedral investigation, Math. Program. 103 (3) (2005) 583–608.
[7]
Ben-Ameur W., Mohamed-Sidi M.-A., Neto J., The k-separator problem, in: Computing and Combinatorics, Springer, 2013, pp. 337–348.
[8]
Ben-Ameur W., Mohamed-Sidi M.-A., Neto J., The k-separator problem: polyhedra, complexity and approximation results, J. Comb. Optim. 29 (1) (2015) 276–307.
[9]
Biha M.D., Meurs M.-J., An exact algorithm for solving the vertex separator problem, J. Global Optim. 49 (3) (2011) 425–434.
[10]
Cornaz D., Furini F., Lacroix M., Malaguti E., Mahjoub A.R., Martin S., Mathematical formulations for the balanced vertex k-separator problem, in: Control, Decision and Information Technologies, CoDIT, 2014 International Conference on, IEEE, 2014, pp. 176–181.
[11]
de Souza C., Balas E., The vertex separator problem: algorithms and computations, Math. Program. 103 (3) (2005) 609–631.
[12]
Lee E., Partitioning a graph into small pieces with applications to path transversal, in: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2017, pp. 1546–1558.
[13]
G. Naves, V. Jost, The graphs with the max-mader-flow-min-multiway-cut property, 2011, arXiv preprint arXiv:1101.2061.
[14]
Garg N., Vazirani V.V., Yannakakis M., Multiway cuts in directed and node weighted graphs, in: Automata, Languages and Programming, Springer, 1994, pp. 487–498.
[15]
Dinur I., Safra S., On the hardness of approximating minimum vertex cover, Ann. of Math. (2005) 439–485.
[17]
Barbehenn M., A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices, IEEE Trans. Comput. 47 (2) (1998) 263.
[18]
Kovács P., Minimum-cost flow algorithms: an experimental evaluation, Optim. Methods Softw. 30 (1) (2015) 94–127.
[19]
Schrijver A., Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, Volume 24, Springer, 2003.
[20]
Dahlhaus E., Johnson D.S., Papadimitriou C.H., Seymour P.D., Yannakakis M., The complexity of multiterminal cuts, SIAM J. Comput. 23 (4) (1994) 864–894.

Cited By

View all
  • (2024)A Graph Multi-separator Problem for Image SegmentationJournal of Mathematical Imaging and Vision10.1007/s10851-024-01201-166:5(839-872)Online publication date: 1-Oct-2024
  • (2023)A note on the SDP relaxation of the minimum cut problemJournal of Global Optimization10.1007/s10898-022-01235-y87:2-4(857-876)Online publication date: 1-Nov-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete Applied Mathematics
Discrete Applied Mathematics  Volume 256, Issue C
Mar 2019
163 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 15 March 2019

Author Tags

  1. Vertex separator problem
  2. Integer programming
  3. Polytope
  4. Facet
  5. Branch-and-Cut algorithm
  6. Complexity
  7. Separation algorithm

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Graph Multi-separator Problem for Image SegmentationJournal of Mathematical Imaging and Vision10.1007/s10851-024-01201-166:5(839-872)Online publication date: 1-Oct-2024
  • (2023)A note on the SDP relaxation of the minimum cut problemJournal of Global Optimization10.1007/s10898-022-01235-y87:2-4(857-876)Online publication date: 1-Nov-2023

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media