Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

On the universal embedding of the near hexagon related to the extended ternary Golay code

Published: 01 March 2012 Publication History

Abstract

Let E"1 be the near hexagon on 729 points related to the extended ternary Golay code. We prove in an entirely geometric way that the generating and embedding ranks of E"1 are equal to 24. We also study the structure of the universal embedding e@? of E"1. More precisely, we consider several nice subgeometries A of E"1 and determine which kind of embedding e@?"A is, where e@?"A is the embedding of A induced by e@?.

References

[1]
Beth, T., Jungnickel, D. and Lenz, H., . In: Encyclopedia of Mathematics and its Applications, vol. 69. Cambridge University Press, Cambridge.
[2]
Blok, R.J. and Brouwer, A.E., Spanning point-line geometries in buildings of spherical type. J. Geom. v62. 26-35.
[3]
Brouwer, A.E., The uniqueness of the near hexagon on 729 points. Combinatorica. v2. 333-340.
[4]
Brouwer, A.E., Cohen, A.M., Hall, J.I. and Wilbrink, H.A., Near polygons and Fischer spaces. Geom. Dedicata. v49. 349-368.
[5]
Brouwer, A.E., Cohen, A.M. and Neumaier, A., . In: Ergebnisse der Mathematik Und ihrer Grenzgebiete (3), vol. 18. Springer-Verlag, Berlin.
[6]
A.E. Brouwer, S.V. Shpectorov, Dimensions of embeddings of near polygons, Unpublished Preprint, 1998.
[7]
B.N. Cooperstein, Generation of embeddable incidence geometries: a survey, in: Topics in Diagram Geometry, Quad. Mat. vol. 12, Dept. Math., Seconda Univ. Napoli, Caserta, 2003, pp. 29-57.
[8]
Coxeter, H.S.M., Twelve points in PG(5,3) with 95040 self-transformations. Proc. R. Soc. Lond. Ser. A. v247. 279-293.
[9]
De Bruyn, B., Near Polygons. 2006. Birkhäuser Verlag, Basel.
[10]
B. De Bruyn, Dual embeddings of dense near polygons, Ars Combin. (in press).
[11]
De Bruyn, B. and De Clerck, F., On linear representations of near hexagons. European J. Combin. v20. 45-60.
[12]
Golay, M.J.E., Notes on digital coding. Proc. IRE. v37. 657
[13]
Ronan, M.A., Embeddings and hyperplanes of discrete geometries. European J. Combin. v8. 179-185.
[14]
Shult, E.E., On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin. v4. 299-316.
[15]
Shult, E.E. and Yanushka, A., Near n-gons and line systems. Geom. Dedicata. v9. 1-72.
[16]
Yoshiara, S., Codes associated with some near polygons having three points on each line. Algebra Colloq. v2. 79-96.
  1. On the universal embedding of the near hexagon related to the extended ternary Golay code

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Discrete Mathematics
    Discrete Mathematics  Volume 312, Issue 5
    March, 2012
    265 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 March 2012

    Author Tags

    1. Embedding rank
    2. Extended ternary Golay code
    3. Generating rank
    4. Near hexagon
    5. Universal embedding

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media