Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A characterization of a class of hyperplanes of DW(2n1,F)

Published: 06 January 2017 Publication History

Abstract

A hyperplane of the symplectic dual polar space DW(2n1,F), n2, is said to be of subspace-type if it consists of all maximal singular subspaces of W(2n1,F) meeting a given (n1)-dimensional subspace of PG(2n1,F). We show that a hyperplane of DW(2n1,F) is of subspace-type if and only if every hex F of DW(2n1,F) intersects it in either F, a singular hyperplane of F or the extension of a full subgrid of a quad. In the case F is a perfect field of characteristic 2, a stronger result can be proved, namely a hyperplane H of DW(2n1,F) is of subspace-type or arises from the spin-embedding of DW(2n1,F)DQ(2n,F) if and only if every hex F intersects it in either F, a singular hyperplane of F, a hexagonal hyperplane of F or the extension of a full subgrid of a quad.

References

[1]
R.J. Blok, A.E. Brouwer, The geometry far from a residue, in: Trends Math., Birkhuser, 1998, pp. 29-38.
[2]
F. Buekenhout, P.J. Cameron, Projective and affine geometry over division rings, in: Handbook of Incidence Geometry, North-Holland, 1995.
[3]
I. Cardinali, B. De Bruyn, A. Pasini, Locally singular hyperplanes in thick dual polar spaces of rank 4, J. Combin. Theory Ser. A, 113 (2006) 636-646.
[4]
A.M. Cohen, E.E. Shult, Affine polar spaces, Geom. Dedicata, 35 (1990) 43-76.
[5]
B.N. Cooperstein, A. Pasini, The non-existence of ovoids in the dual polar space DW(5,q), J. Combin. Theory Ser. A, 104 (2003) 351-364.
[6]
B. De Bruyn, Hyperplanes of DW(2n1,q), q2, without ovoidal quads, Discrete Math., 307 (2007) 2680-2694.
[7]
B. De Bruyn, The hyperplanes of DQ(2n,K) and DQ(2n+1,q) which arise from their spin-embeddings, J. Combin. Theory Ser. A, 114 (2007) 681-691.
[8]
B. De Bruyn, A characterization of the SDPS-hyperplanes of dual polar spaces, European J. Combin., 28 (2007) 705-714.
[9]
B. De Bruyn, On a class of hyperplanes of the symplectic and hermitian dual polar spaces, Electron. J. Combin., 16 (2009) 20 pp.
[10]
B. De Bruyn, H. Pralle, The hyperplanes of DW(5,q) with no ovoidal quad, Glasg. Math. J., 48 (2006) 75-82.
[11]
B. De Bruyn, P. Vandecasteele, Valuations and hyperplanes of dual polar spaces, J. Combin. Theory Ser. A, 112 (2005) 194-211.
[12]
A. Pasini, S. Shpectorov, Uniform hyperplanes of finite dual polar spaces of rank 3, J. Combin. Theory Ser. A, 94 (2001) 276-288.
[13]
H. Pralle, A remark on non-uniform hyperplanes of finite thick dual polar spaces, European J. Combin., 22 (2001) 1003-1007.
[14]
H. Pralle, Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad, Adv. Geom., 2 (2002) 107-122.
[15]
H. Pralle, S. Shpectorov, The ovoidal hyperplanes of a dual polar space of rank 4, Adv. Geom., 7 (2007) 1-17.
[16]
M.A. Ronan, Embeddings and hyperplanes of discrete geometries, European J. Combin., 8 (1987) 179-185.
[17]
E.E. Shult, Generalized hexagons as geometric hyperplanes of near hexagons, in: Groups, Combinatorics and Geometry, Cambridge Univ. Press, 1992, pp. 229-239.
[18]
E.E. Shult, Embeddings and hyperplanes of Lie incidence geometries, in: London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, 1995, pp. 215-232.
[19]
E.E. Shult, On Veldkamp lines, Bull. Belg. Math. Soc. Simon Stevin, 4 (1997) 299-316.
[20]
E.E. Shult, J.A. Thas, Hyperplanes of dual polar spaces and the spin module, Arch. Math., 59 (1992) 610-623.
[21]
J. Tits, Buildings of Spherical Type and Finite BN-pairs, in: Lecture Notes in Mathematics, vol. 386, Springer, 1974.
  1. A characterization of a class of hyperplanes of DW(2n1,F)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Discrete Mathematics
    Discrete Mathematics  Volume 340, Issue 1
    January 2017
    67 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 06 January 2017

    Author Tags

    1. Hyperplane (of subspace-type)
    2. Spin-embedding
    3. Symplectic dual polar space

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media