Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Rao test of polarimetric detection for targets with energy spillover in non-Gaussian clutter

Published: 27 February 2024 Publication History
  • Get Citation Alerts
  • Abstract

    In this paper, we address the problem of polarimetric detection for targets with energy spillover in non-Gaussian clutter. The polarization diversity and spillover of target energy to consecutive range bins are jointly exploited to enhance the performance of target detection. Two adaptive detectors are designed according to the Rao test, as well as its two-step implementation, i.e., 2S-Rao test. It is shown that the 2S-Rao test detector coincides with the existing generalized likelihood ratio test (GLRT) detector, whereas the Rao test detector is new, and outperforms the existing detectors in probability of detection. Experiments based on both simulated and real data illustrate the superiority of the proposed detector.

    References

    [1]
    E.J. Kelly, An adaptive detection algorithm, IEEE Trans. Aerosp. Electron. Syst. 22 (1) (1986) 115–127.
    [2]
    W. Liu, J. Liu, C. Hao, Y. Gao, Y.-L. Wang, Multichannel adaptive signal detection: basic theory and literature review, Sci. China Inf. Sci. 65 (2) (2022).
    [3]
    A. De Maio, Rao test for adaptive detection in Gaussian interference with unknown covariance matrix, IEEE Trans. Signal Process. 55 (7) (2007) 3577–3584.
    [4]
    F.C. Robey, D.R. Fuhrmann, E.J. Kelly, R. Nitzberg, A CFAR adaptive matched filter detector, IEEE Trans. Aerosp. Electron. Syst. 28 (1) (1992) 208–216.
    [5]
    A. De Maio, A new derivation of the adaptive matched filter, IEEE Signal Process. Lett. 11 (10) (2004) 792–793.
    [6]
    W. Liu, J. Liu, T. Liu, H. Chen, Y.-L. Wang, Detector design and performance analysis for target detection in subspace interference, IEEE Signal Process. Lett. 30 (2023) 618–622.
    [7]
    P. Addabbo, S. Han, F. Biondi, G. Giunta, D. Orlando, Adaptive radar detection in the presence of multiple alternative hypotheses using Kullback-Leibler information criterion-part i: detector designs, IEEE Trans. Signal Process. 99 (2021) 3742–3754.
    [8]
    J. Liu, D. Massaro, D. Orlando, A. Farina, Radar adaptive detection architectures for heterogeneous environments, IEEE Trans. Signal Process. 68 (2020) 4307–4319.
    [9]
    P. Addabbo, S. Han, D. Orlando, G. Ricci, Learning strategies for radar clutter classification, IEEE Trans. Signal Process. (2021).
    [10]
    A.J. Cann, Range gate straddling loss and joint probability with partial correlation, IEEE Trans. Aerosp. Electron. Syst. 38 (3) (2002) 1054–1058.
    [11]
    X. Zhang, P. Willett, Y. Bar-Shalom, Detection and localization of multiple unresolved extended targets via monopulse radar signal processing, IEEE Trans. Aerosp. Electron. Syst. 45 (2) (2009) 455–472.
    [12]
    C. Hao, D. Orlando, J. Liu, C. Yin, Advances in Adaptive Radar Detection and Range Estimation, Springer, 2022.
    [13]
    D. Orlando, G. Ricci, Adaptive radar detection and localization of a point-like target, IEEE Trans. Signal Process. 59 (9) (2011) 4086–4096.
    [14]
    A. De Maio, C. Hao, D. Orlando, An adaptive detector with range estimation capabilities for partially homogeneous environment, IEEE Signal Process. Lett. 21 (3) (2014) 325–329.
    [15]
    L. Yan, C. Hao, D. Orlando, A. Farina, C. Hou, Parametric space-time detection and range estimation of point-like targets in partially homogeneous environment, IEEE Trans. Aerosp. Electron. Syst. 56 (2) (2020) 1228–1242.
    [16]
    A. Aubry, A. De Maio, G. Foglia, C. Hao, D. Orlando, A radar detector with enhanced range estimation capabilities for partially homogeneous environment, IET Radar Sonar Navig. 8 (9) (2014) 1018–1025.
    [17]
    A. Aubry, A. De Maio, G. Foglia, C. Hao, D. Orlando, Radar detection and range estimation using oversampled data, IEEE Trans. Aerosp. Electron. Syst. 51 (2) (2015) 1039–1052.
    [18]
    C. Hao, D. Orlando, G. Foglia, X. Ma, C. Hou, Adaptive radar detection and range estimation with oversampled data for partially homogeneous environment, IEEE Signal Process. Lett. 22 (9) (2015) 1359–1363.
    [19]
    Y. Gao, G. Liao, S. Zhu, X. Zhang, D. Yang, Persymmetric adaptive detectors in homogeneous and partially homogeneous environments, IEEE Trans. Signal Process. 62 (2) (2014) 331–342.
    [20]
    S. Yan, D. Massaro, D. Orlando, C. Hao, A. Farina, Adaptive detection and range estimation of point-like targets with symmetric spectrum, IEEE Signal Process. Lett. 24 (11) (November 2017) 1744–1748.
    [21]
    B. Shi, D. Chen, C. Hao, C. Hou, Bayesian radar detection and range estimation of a point-like target, in: International Conference on Radar Systems (Radar 2017), Conference Proceedings, pp. 1–6.
    [22]
    M. Hurtado, A. Nehorai, Polarimetric detection of targets in heavy inhomogeneous clutter, IEEE Trans. Signal Process. 56 (4) (2008) 1349–1361.
    [23]
    L.M. Novak, M.B. Sechtin, M.J. Cardullo, Studies of target detection algorithms that use polarimetric radar data, IEEE Trans. Aerosp. Electron. Syst. 25 (2) (1989) 150–165.
    [24]
    Z. Wang, Z. He, Q. He, B. Xiong, Z. Cheng, Persymmetric adaptive target detection with dual-polarization in compound Gaussian sea clutter with inverse gamma texture, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–17.
    [25]
    J. Wang, Z. Wang, Z. He, J. Li, GLRT-based polarimetric detection in compound-Gaussian sea clutter with inverse-gaussian texture, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1–5.
    [26]
    Y. Zhang, Q. Shu, T. Jiang, A GLRT-based polarimetric detector for sea-surface weak target detection, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1–5.
    [27]
    C. Hao, S. Gazor, X. Ma, S. Yan, C. Hou, D. Orlando, Polarimetric detection and range estimation of a point-like target, IEEE Trans. Aerosp. Electron. Syst. 52 (2) (2016) 603–616.
    [28]
    E. Conte, A. De Maio, C. Galdi, Statistical analysis of real clutter at different range resolutions, IEEE Trans. Aerosp. Electron. Syst. 40 (3) (2004) 903–918.
    [29]
    K.D. Ward, S. Watts, R.J. Tough, Sea Clutter: Scattering, the K Distribution and Radar Performance, vol. 20, IET, 2006.
    [30]
    L. Shen, Z. Liu, Y. Xu, Polarimetric detection and range estimation for a point-like target in non-Gaussian clutter, IET Radar Sonar Navig. 12 (3) (2018) 361–365.
    [31]
    S. Bose, A.O. Steinhardt, A maximal invariant framework for adaptive detection with structured and unstructured covariance matrices, IEEE Trans. Signal Process. 43 (9) (1995) 2164–2175.
    [32]
    D.H. Johnson, E.D. Dan, Array Signal Processing: Concepts and Techniques. Array Signal Processing: Concepts and Techniques, 1992.
    [33]
    W. Liu, Adaptive detection for multichannel radar signals, Thesis 2014.
    [34]
    W. Liu, Y. Wang, W. Xie, Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications, Signal Process. 94 (2014) 1–5.
    [35]
    A. De Maio, G. Alfano, Polarimetric adaptive detection in non-Gaussian noise, Signal Process. 83 (2) (2003) 297–306.
    [36]
    H.R. Park, J. Li, H. Wang, Polarization-space-time domain generalized likelihood ratio detection of radar targets, Signal Process. 41 (2) (1995) 153–164.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Digital Signal Processing
    Digital Signal Processing  Volume 144, Issue C
    Jan 2024
    322 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 27 February 2024

    Author Tags

    1. Adaptive detection
    2. Polarization
    3. Spillover
    4. Localization detector
    5. Non-Gaussian clutter

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media