A note on m-near-factor-critical graphs
References
Index Terms
- A note on m-near-factor-critical graphs
Recommendations
Factor-critical property in 3-dominating-critical graphs
A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by @c(G). A graph G is said to ...
3-Factor-criticality in domination critical graphs
A graph G is said to be k-@c-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-@c-critical graphs remains far from completely ...
3-Factor-Criticality in Double Domination Edge Critical Graphs
A vertex subset S of a graph G is a double dominating set of G if $$|N[v]\cap S|\ge 2$$|N[v]źS|ź2 for each vertex v of G, where N[v] is the set of the vertex v and vertices adjacent to v. The double domination number of G, denoted by $$\gamma _{\times 2}...
Comments
Information & Contributors
Information
Published In
Publisher
Academic Press Ltd.
United Kingdom
Publication History
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0