Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A note on m-near-factor-critical graphs

Published: 01 August 2019 Publication History

Abstract

A factor (near-factor) of a finite simple graph G is a matching that saturates all vertices (except one). For m ⩾ 0, a graph G is said to be m-critical (m-near-critical) if the deletion of any m vertices from G produces a subgraph that has a factor (near-factor). An m-critical graph is ( m + 1 )-near-critical. The following results are established. (i) Within the class of ( m + 1 )-near-critical graphs, a characterization is given for those that are not m-critical. (ii) For an ( m + 1 )-connected graph, it is ( m + 1 )-near-critical if and only if it is m-critical. (iii) An ( m + 2 )-near-critical graph is m-near-critical if its order is at least m + 5.

References

[1]
Došlić T., Rautenbach D., Factor-critical graphs with the minimum number of near-perfect matchings, Discrete Math. 338 (2015) 2318–2319.
[2]
Favaron O., Stabilité, domination, irredondance et autres paramétres de graphes, Thèse d’Edat, Université de Paris-Sud, 1986.
[3]
Favaron O., On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41–51.
[4]
Gallai T., Neuer Beweis eines Tutte’schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 135–139.
[5]
Li X., Shi Y., Trinks M., Polynomial reconstruction of the matching polynomial, Electron. J. Graph Theory Appl. 3 (2015) 27–34.
[6]
Liu Y., Zhang S., Ear decomposition of factor-critical graphs and number of maximum matchings, Bull. Malays. Math. Sci. Soc. (2) 38 (2015) 1537–1549.
[7]
Lovász L., On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179–195.
[8]
Lovász L., Plummer M.D., Matching Theory, North-Holland, Amsterdam, 1986.
[9]
Tutte W.T., The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107–111.
[10]
Wang H., Shan E., Zhao Y., 3-factor-criticality in double domination edge critical graphs, Graphs Combin. 32 (2016) 1599–1610.
[11]
Yu Q.R., Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993) 55–64.
[12]
Yu Q.R., Liu G., Graph Factors and Matching Extensions, Higher Education Press, Beijing, 2009, Springer-Verlag, Berlin.

Index Terms

  1. A note on m-near-factor-critical graphs
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image European Journal of Combinatorics
        European Journal of Combinatorics  Volume 80, Issue C
        Aug 2019
        432 pages

        Publisher

        Academic Press Ltd.

        United Kingdom

        Publication History

        Published: 01 August 2019

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 15 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media