Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Computer vision-based characterization of large-scale jet flames using a synthetic infrared image generation approach

Published: 01 February 2024 Publication History

Abstract

Different kinds of fire accidents can occur during industrial activities that involve hazardous materials, such as jet fires, which are often involved in a process known as a domino effect that generates a sequence of other accidents of greater magnitude. Jet fires present specific features that can significantly increase the probability of this domino effect, so they become relevant from a risk analysis perspective, making their proper characterization a crucial task. Data acquisition of jet fires involves expensive experiments, especially when infrared imagery is necessary. Therefore, this paper proposes a method that uses Generative Adversarial Networks to produce plausible infrared images from visible ones, making experiments less expensive and allowing for other potential applications. As validation, the infrared images are used in a fire characterization approach that employs Deep Learning to segment radiation zones and extracts the jet fire’s geometrical information. A comparison is done between the measurements obtained from real and generated infrared images. The results suggest that, with the proposed approach, it is possible to realistically replicate the analysis obtained from experiments carried out using both visible and infrared cameras.

References

[1]
A. Croce P., Mudan K.S., Calculating impacts for large open hydrocarbon fires, Fire Saf. J. 11 (1) (1986) 99–112,.
[2]
Badrinarayanan V., Kendall A., Cipolla R., SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (12) (2017) 2481–2495,.
[3]
Bradski G., The OpenCV library, Dr. Dobb’s J. Softw. Tools (2000).
[4]
Casal J., Chapter 10 - Domino effect, in: Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants, second ed., Elsevier, 2018, pp. 405–437,.
[5]
Chamberlain G.A., Developments in design methods for predicting thermal radiation from flares, Chem. Eng. Res. Des. 65 (4) (1987).
[6]
Chen L., Papandreou G., Kokkinos I., Murphy K., Yuille A.L., DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018) 834–848,.
[7]
Cheon M., Vigier T., Krasula L., Lee J., Le Callet P., Lee J.-S., Ambiguity of objective image quality metrics: A new methodology for performance evaluation, Signal Process., Image Commun. 93 (2021),. URL: https://www.sciencedirect.com/science/article/pii/S0923596521000096.
[8]
Ciprián-Sánchez J.F., Ochoa-Ruiz G., Gonzalez-Mendoza M., Rossi L., FIRe-GAN: A novel deep learning-based infrared-visible fusion method for wildfire imagery, Neural Comput. Appl. (2021),.
[9]
Colella F., Ibarreta A., Hart R.J., Morrison T., Watson H.A., Yen M., Jet fire consequence analysis, in: OTC Offshore Technology Conference, 2020,.
[10]
Fay J., Model of large pool fires, J. Hazardous Mater. 136 2 (2006) 219–232.
[11]
Gong F., Li C., Gong W., Li X., Yuan X., Ma Y., Song T., A real-time fire detection method from video with multifeature fusion, Comput. Intell. Neurosci. 2019 (2019),.
[12]
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., Generative adversarial nets, in: Ghahramani Z., Welling M., Cortes C., Lawrence N., Weinberger K.Q. (Eds.), Advances in Neural Information Processing Systems. Vol. 27, Curran Associates, Inc, 2014, pp. 2672–2680. URL: https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
[13]
Gu K., Zhang Y., Qiao J., Vision-based monitoring of flare soot, IEEE Trans. Instrum. Meas. 69 (9) (2020) 7136–7145,.
[14]
Guiberti T., Boyette W., Roberts W., Height of turbulent non-premixed jet flames at elevated pressure, Combust. Flame 220 (2020) 407–409,.
[15]
Iandola F.N., Moskewicz M.W., Ashraf K., Han S., Dally W.J., Keutzer K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size, 2016, CoRR, arXiv:1602.07360.
[16]
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-Image Translation with Conditional Adversarial Networks. In: CVPR.
[17]
Janssen R., Sepasian N., Automatic flare-stack monitoring, SPE Prod. Oper. 34 (01) (2018) 18–23,.
[18]
Kashi E., Bahoosh M., Jet fire assessment in complex environments using computational fluid dynamics, Braz. J. Chem. Eng. 37 (2020) 203–212,.
[19]
Keshavarz G., Khan F., Hawboldt K., Modeling of pool fires in cold regions, Fire Saf. J. 48 (2012) 1–10,.
[20]
Klanderman G., Rucklidge W., Huttenlocher D., Comparing images using the Hausdorff distance, IEEE Trans. Pattern Anal. Mach. Intell. 15 (09) (1993) 850–863,.
[21]
Korhonen J., You J., Peak signal-to-noise ratio revisited: Is simple beautiful?, in: 2012 Fourth International Workshop on Quality of Multimedia Experience, 2012, pp. 37–38,.
[22]
Lattimer B., Hodges J., Lattimer A., Using machine learning in physics-based simulation of fire, Fire Saf. J. 114 (2020),.
[23]
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., van der Laak J.A., van Ginneken B., Sánchez C.I., A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88,.
[24]
Mahony N.O., Campbell S., Carvalho A., Harapanahalli S., Velasco-Hernández G.A., Krpalkova L., Riordan D., Walsh J., Deep learning vs. Traditional computer vision, Adv. Intell. Syst. Comput. 943 (2019) 128–144,.
[25]
Mao J., Zheng C., Yin J., Tian Y., Cui W., Wildfire smoke classification based on synthetic images and pixel- and feature-level domain adaptation, Sensors 21 (23) (2021),. URL: https://www.mdpi.com/1424-8220/21/23/7785.
[26]
Mashhadimoslem H., Ghaemi A., Palacios A., Analysis of deep learning neural network combined with experiments to develop predictive models for a propane vertical jet fire, Heliyon 6 (11) (2020),.
[27]
Milz, S., Rudiger, T., Suss, S., 2018. Aerial GANeration: Towards Realistic Data Augmentation Using Conditional GANs. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
[28]
Mirza M., Osindero S., Conditional generative adversarial nets, 2014, arXiv:1411.1784.
[29]
Official Journal of the European Community M., EU : Council Directive 82/501EEC of 24 June 1982 on the major accident hazards of certain industrial activities, 1982, p. 1. OJ L 230 05.08.1982.
[30]
Official Journal of the European Community M., EU : Council Directive 96/82/EC of 9 December 1996 on the control of major-accident hazards involving dangerous substances, 1996, pp. 13–33. OJ L 10 14.1.1997.
[31]
Official Journal of the European Community M., EU : Directive 2003/105/EC of the European Parliament and of the Council of 16 December 2003 amending Council Directive 96/82/EC on the control of major-accident hazards involving dangerous substances, 2003, pp. 97–105. OJ L 345 31.12.2003.
[32]
Oktay O., Schlemper J., Folgoc L.L., Lee M., Heinrich M., Misawa K., Mori K., McDonagh S., Hammerla N.Y., Kainz B., Glocker B., Rueckert D., Attention U-Net: Learning where to look for the pancreas, 2018, arXiv:1804.03999.
[33]
Palacios A., Study of Jet Fires Geometry and Radiative Features, (Ph.D. thesis) Universitat Politècnica de Catalunya, 2011.
[34]
Palacios A., Muñoz M., Darbra R., Casal J., Thermal radiation from vertical jet fires, Fire Saf. J. 51 (2012) 93–101,. URL: https://www.sciencedirect.com/science/article/pii/S0379711212000495.
[35]
Pan Z., Yu W., Yi X., Khan A., Yuan F., Zheng Y., Recent progress on generative adversarial networks (GANs): A survey, IEEE Access 7 (2019) 36322–36333,.
[36]
Park M., Tran D.Q., Jung D., Park S., Wildfire-detection method using DenseNet and CycleGAN data augmentation-based remote camera imagery, Remote Sens. 12 (22) (2020),. URL: https://www.mdpi.com/2072-4292/12/22/3715.
[37]
Paszke A., Chaurasia A., Kim S., Culurciello E., ENet: A deep neural network architecture for real-time semantic segmentation, 2016, arXiv.
[38]
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Kopf A., Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chintala S., PyTorch: An imperative style, high-performance deep learning library, in: Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E., Garnett R. (Eds.), Advances in Neural Information Processing Systems. Vol. 32, Curran Associates, Inc, 2019, pp. 8024–8035.
[39]
Pérez-Guerrero C., Palacios A., Ochoa-Ruiz G., Foroughi V., Pastor E., Gonzalez-Mendoza M., Falcón-Morales L.E., Experimental large-scale jet flames’ geometrical features extraction for risk management using infrared images and deep learning segmentation methods, J. Loss Prev. Process Ind. 80 (2022),. URL: https://www.sciencedirect.com/science/article/pii/S0950423022001796.
[40]
Pérez-Guerrero C., Palacios A., Ochoa-Ruiz G., Mata C., Gonzalez-Mendoza M., Falcón-Morales L.E., Comparing machine learning based segmentation models on jet fire radiation zones, in: Batyrshin I., Gelbukh A., Sidorov G. (Eds.), Advances in Computational Intelligence, Springer International Publishing, Cham, 2021, pp. 161–172,.
[41]
Preedanan W., Kondo T., Bunnun P., Kumazawa I., A comparative study of image quality assessment, in: 2018 International Workshop on Advanced Image Technology, IWAIT, 2018, pp. 1–4,.
[42]
Radford A., Metz L., Chintala S., Unsupervised representation learning with deep convolutional generative adversarial networks, 2016, arXiv:1511.06434.
[43]
Roberts J.W., van Aardt J.A., Ahmed F.B., Assessment of image fusion procedures using entropy, image quality, and multispectral classification, J. Appl. Remote Sens. 2 (1) (2008) 1–28,.
[44]
Ronneberger O., Fischer P., Brox T., U-Net: Convolutional networks for biomedical image segmentation, Med. Image Comput. Comput.-Assist. Intervent. 9351 (2015) 234–241,.
[45]
Shannon C.E., A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379–423,.
[46]
Shcherbakov M., Brebels A., Shcherbakova N., Tyukov A., Janovsky T., Kamaev V., A survey of forecast error measures, World Appl. Sci. J. 24 (2013) 171–176,.
[47]
Sheng P., Yang Z., Qian Y., GANs for children: A generative data augmentation strategy for children speech recognition, in: 2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU, 2019, pp. 129–135,.
[48]
Taha A.A., Hanbury A., Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool, BMC Med. Imag. 15 (29) (2015) 15–29,.
[49]
U.S. Chemical Safety and Hazard Investigation Board, 2008. LPG Fire at Valero – McKee Rrefinery. CSB Report No. 2007-05-I-TX,.
[50]
Wang Z., Zhou K., Zhang L., Nie X., Wu Y., Jiang J., Dederichs A.S., He L., Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate, Process Saf. Environ. Prot. 147 (2021) 547–558,.
[51]
Wu E., Wu K., Cox D., Lotter W., Conditional infilling GANs for data augmentation in Mammogram classification, in: Stoyanov D., Taylor Z., Kainz B., Maicas G., Beichel R.R., Martel A., Maier-Hein L., Bhatia K., Vercauteren T., Oktay O., Carneiro G., Bradley A.P., Nascimento J., Min H., Brown M.S., Jacobs C., Lassen-Schmidt B., Mori K., Petersen J., San José Estépar R., Schmidt-Richberg A., Veiga C. (Eds.), Image Analysis for Moving Organ, Breast, and Thoracic Images, Springer International Publishing, Cham, 2018, pp. 98–106.
[52]
Xu H., Ma J., Jiang J., Guo X., Ling H., U2Fusion: A unified unsupervised image fusion network, IEEE Trans. Pattern Anal. Mach. Intell. 44 (1) (2022) 502–518,.
[53]
Yang Z., Wang T., Bu L., Ouyang J., Training with augmented data: GAN-based flame-burning image synthesis for fire segmentation in warehouse, Fire Technol. 58 (1) (2022) 183–215,.
[54]
Zhang J., Zhu H., Wang P., Ling X., ATT squeeze U-Net: A lightweight network for forest fire detection and recognition, IEEE Access 9 (2021) 10858–10870,.
[55]
Zhao Y., Fu G., Wang H., Zhang S., The fusion of unmatched infrared and visible images based on generative adversarial networks, Math. Probl. Eng. 2020 (2020),.
[56]
Zhikai Y., Leping B., Teng W., Tianrui Z., Fen W., Fire image generation based on ACGAN, in: 2019 Chinese Control and Decision Conference, CCDC, 2019, pp. 5743–5746,.
[57]
Zhou Z., Siddiquee M.M.R., Tajbakhsh N., Liang J., UNet++: Redesigning skip connections to exploit multiscale features in image segmentation, IEEE Trans. Med. Imaging (2019),.
[58]
Zhou Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P., Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612.
[59]
Zhou Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P., The SSIM index for image quality assessment, 2020, https://www.cns.nyu.edu/~lcv/ssim/. Accessed: 2020-08-26.
[60]
Zhu J., Li W., Lin D., Cheng H., Zhao G., Intelligent fire monitor for fire robot based on infrared image feedback control, Fire Technol. 56 (5) (2020) 2089–2109,.

Index Terms

  1. Computer vision-based characterization of large-scale jet flames using a synthetic infrared image generation approach
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Engineering Applications of Artificial Intelligence
        Engineering Applications of Artificial Intelligence  Volume 127, Issue PA
        Jan 2024
        1599 pages

        Publisher

        Pergamon Press, Inc.

        United States

        Publication History

        Published: 01 February 2024

        Author Tags

        1. Jet flames
        2. Computer vision
        3. Deep learning
        4. Characterization
        5. Image generation

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media