Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Thermal error prediction of precision boring machine tools based on extreme gradient boosting algorithm-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network model and physical-edge-cloud system

Published: 01 February 2024 Publication History
  • Get Citation Alerts
  • Abstract

    The geometric and thermal errors are the crucial errors that directly impact the machining accuracy, and then the crucial errors should be controlled. However, the prediction model is not robust and accurate enough, and the real-time performance of the control system is weak. To address the above challenges, the thermal error models are proposed based on the extreme gradient boosting algorithm-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network. The critical input variables are identified by extreme gradient boosting. The hyper-parameters of bi-directional ordered neurons-long short-term memory neural network are adaptively optimized by improved sailed fish optimizer. Moreover, the control model is proposed by analyzing the analytical mapping relationship between the compensation component of each axis and crucial errors. Finally, the physical-edge-cloud system is designed to control the crucial errors of precision boring machine tools in real time. The prediction model and control model are embedded into the edge layer. The prediction model is trained on the cloud layer of physical-edge-cloud system. For the thermal error of the spindle system, the predictive ability of the extreme gradient boosting-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network model is 96.39%. For the thermal error of the linear axis, the predictive abilities of extreme gradient boosting-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network model are 90.41%, 92.00%, 95.47%, 97.84%, and 91.87% at 1h, 3h, 5h, 7h, and 9h, respectively. Furthermore, the machining error is reduced by more than 75.00% with the application of the designed physical-edge-cloud system.

    Graphical abstract

    Display Omitted

    Highlights

    XGBoost-ISFO-BiON-LSTM thermal error model is proposed.
    XGBoost is applied to select feature variables for error prediction.
    Nonlinear control parameter is designed for ISFO.
    Crucial error control model of boring machine tool is proposed.
    Physical-edge-fog-cloud system architecture is designed for crucial error control.

    References

    [1]
    A.M. Abdulshahed, A.P. Longstaff, S. Fletcher, A. Potdar, Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model, J. Manuf. Syst. 41 (2016) 130–142,.
    [2]
    M.S. Acar, O. Erbas, O. Arslan, The performance of vapor compression cooling system aided Ranque-Hilsch vortex tube, Therm. Sci. 23 (2017) 1189–1201,.
    [3]
    A. Bello Sururah, O. Oyedele Lukumon, Olugbenga O. Akinade, Muhammad Bilal, Juan Manuel Davila Delgado, Lukman A. Akanbi, Anuoluwapo O. Ajayi, Hakeem A. Owolabi, Cloud computing in construction industry: use cases, benefits and challenges, Autom. ConStruct. 122 (2021),. 103441.
    [4]
    T.Q. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining 8 (2016) 785–794,.
    [5]
    C. Chen, H. Shi, Z.W. Jiang, A. Salhi, R.X. Chen, R.X. Cui, B. Yu, Dnn-Dtis, Improved drug-target interactions prediction using XGBoost feature selection and deep neural network, Comput. Biol. Med. 136 (2021),.
    [6]
    Y. Dai, J. Pang, X.K. Rui, W.W. Li, Q.H. Wang, S.K. Li, Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm, Case Stud. Therm. Eng. 47 (2023),.
    [7]
    De Araujo, Lins, Paulo Ricardo Marques de Araujo, Romulo Gonçalves Lins, Cloud-based approach for automatic CNC workpiece origin localization based on image analysis, Robot. Comput.-Integr. Manuf. 68 (2021) (2021),.
    [8]
    X.L. Deng, H. Lin, J.C. Wang, C.X. Xie, J.Z. Fu, Review on thermal design of machine tool spindles, Opt Precis. Eng. 26 (6) (2018) 1415–1429,.
    [9]
    S. El Kafhali, K. Salah, Performance modelling and analysis of Internet of Things enabled healthcare monitoring systems, IET Netw. 8 (1) (2019) 48–58,.
    [10]
    M. Fujishima, K. Narimatsu, N. Irino, Y. Ido, Thermal displacement reduction and compensation of a turning center, CIRP J. Manuf. Sci. Technol. 22 (2018) 111–115,.
    [11]
    S.N. Grama, A. Mathur, R. Aralaguppi, T. Subramanian, Optimization of high speed machine tool spindle to minimize thermal distortion, Proc. CIRP 58 (2017) 457–462,.
    [12]
    H.Q. Gui, J.L. Liu, C. Ma, M.Y. Li, S.L. Wang, New machine learning application platform for spatial–temporal thermal error prediction and control with STFGCN for ball screw system, Mech. Syst. Signal Process. 192 (1) (2023),.
    [13]
    M.T. Hoang, Y.R. Wu, Error compensation method for milling single-threaded screw rotors with end mill tools, Mech. Mach. Theor. 157 (2021),.
    [14]
    C.G. Huang, H.Z. Huang, Y.F. Li, A bidirectional LSTM prognostics method under multiple operational conditions, IEEE Trans. Ind. Electron. 66 (11) (2019) 8792–8802,.
    [15]
    Y.B. Huang, K.C. Fan, Z.F. Lou, W. Sun, A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles, Int. J. Mach. Tool Manufact. 151 (2020),.
    [16]
    G.J. Jia, X. Zhang, X.Z. Wang, X.P. Zhang, N.D. Huang, A spindle thermal error modeling based on 1DCNN-GRU-Attention architecture under controlled ambient temperature and active cooling, Int. J. Adv. Manuf. Technol. 127 (2023) 1525–1539,.
    [17]
    Y. Li, J. Zhao, S.J. Ji, Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network, Int. J. Adv. Manuf. Technol. 97 (2018) 2575–2586,.
    [18]
    J.Q. Li, Y.F. Zhang, Z.Z. Chen, J. Wang, M. Fang, C.W. Luo, H.H. Wang, A novel edge-enabled SLAM solution using projected depth image information, Neural Comput. Appl. 32 (2020) 15369–15381,.
    [19]
    Y.C. Liang, W.D. Li, P. Lou, J.M. Hu, Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory networks and fog-cloud architecture, J. Manuf. Syst. 62 (2022) 950–963,.
    [20]
    J.L. Liu, C. Ma, S.L. Wang, Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools, Mech. Syst. Signal Process. 138 (2020),.
    [21]
    J.L. Liu, C. Ma, H.Q. Gui, S.L. Wang, Thermally-induced error compensation of spindle system based on long short term memory neural networks, Appl. Soft Comput. 102 (2021),.
    [22]
    P.L. Liu, Z.C. Du, H.M. Li, M. Deng, X.B. Feng, J.G. Yang, Thermal error modeling based on BiLSTM deep learning for CNC machine tool, Adv. Manuf. 9 (2021) 235–249,.
    [23]
    W. Long, J.J. Jiao, X.M. Liang, M.Z. Tang, An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization, Eng. Appl. Artif. Intell. 68 (2018) 63–80,.
    [24]
    H.D. Luo, H.M. Cai, H. Yu, Y. Sun, Z.M. Bi, L.H. Jiang, A short-term energy prediction system based on edge computing for smart city, Future Generat. Comput. Syst. 101 (2019) 444–457,.
    [25]
    E. Miao, Y. Liu, H. Liu, Z.H. Gao, W. Li, Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool, Int. J. Mach. Tool Manufact. 97 (2015) 50–59,.
    [26]
    H.V. Ngoc, J.R.R. Mayer, E. Bitar-Nehme, Deep learning LSTM for predicting thermally induced geometric errors using rotary axes' powers as input parameters, CIRP J. Manuf. Sci. Technol. 37 (2022) 70–80,.
    [27]
    P. Pinson, G. Kariniotakis, Conditional prediction intervals of wind power generation, IEEE Trans. Power Syst. 25 (4) (2010) 1845–1856,.
    [28]
    M. Pirtini, I. Lazoglu, Forces and hole quality in drilling, Int. J. Mach. Tool Manufact. 45 (11) (2005) 1271–1281,.
    [29]
    R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools—a review: Part II: thermal errors, Int. J. Mach. Tool Manufact. 40 (9) (2000) 1257–1284,.
    [30]
    Z. Said, P. Sharma, B.J. Bora, A.K. Pandey, Sonication impact on thermal conductivity of f-MWCNT nanofluids using XGBoost and Gaussian process regression, J. Taiwan Inst. Chem. Eng. 145 (2023),.
    [31]
    S. Shadravan, H.R. Naji, V.K. Bardsiri, The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems, Eng. Appl. Artif. Intell. 80 (2019) 20–34,.
    [32]
    P. Sharma, B.J. Bora, A review of modern machine learning techniques in the prediction of remaining useful life of lithium-ion batteries, Batteries 9 (1) (2023) 13,.
    [33]
    H. Shi, B. He, Y.Y. Yue, C.Q. Min, X.S. Mei, Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool, Appl. Therm. Eng. 161 (2019),.
    [34]
    F. Tan, M. Yin, L. Wang, G.F. Yin, Spindle thermal error robust modeling using LASSO and LS-SVM, Int. J. Adv. Manuf. Technol. 94 (2018) 2861–2874,.
    [35]
    Z.H. Tang, G.N. Zhao, T.H. Ouyang, Two-phase deep learning model for short-term wind direction forecasting, Renew. Energy 173 (2021) 1005–1016,.
    [36]
    V.V. Wanatasanappan, P.K. Kanti, p. Sharma, N. Husna, M.Z. Abdullah, Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: a new correlation based on mixture ratio, J. Mol. Liq. 375 (2023),.
    [37]
    X.Y. Wei, H.H. Ye, J.H. Zhou, S.J. Pan, M.Y. Qian, A regularized regression thermal error modeling method for CNC machine tools under different ambient temperatures and spindle speeds, Sensors 23 (10) (2023) 4916,.
    [38]
    X.Y. Wu, S. Zhang, W.D. Xiao, Y.X. Yin, The exploration/exploitation tradeoff in whale optimization algorithm, IEEE Access 7 (2019) 125919–125928,.
    [39]
    C.Y. Wu, S.T. Xiang, W.S. Xiang, Spindle thermal error prediction approach based on thermal infrared images: a deep learning method, J. Manuf. Syst. 59 (2021) 67–80,.
    [40]
    C.J. Xia, S.L. Wang, C. Ma, S.B. Wang, Y.L. Xiao, Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model, Int. J. Mech. Sci. 169 (2020),.
    [41]
    J.Y. Yan, J.G. Yang, Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation, Int. J. Adv. Manuf. Technol. 43 (2009) 1124–1132,.
    [42]
    X.A. Yan, Y. Liu, Y.D. Xu, M.P. Jia, Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition, Energy Convers. Manag. 225 (2020),.
    [43]
    S.H. Yang, K.H. Kim, Y.K. Park, Measurement of spindle thermal errors in machine tool using hemispherical ball bar test, Int. J. Mach. Tool Manufact. 44 (2–3) (2004) 333–340,.
    [44]
    J. Yang, H. Shi, B. Feng, L. Zhao, C. Ma, X.S. Mei, Thermal error modeling and compensation for a high-speed motorized spindle, Int. J. Adv. Manuf. Technol. 77 (2015) 1005–1017,.
    [45]
    J.C. Yang, J.B. Wen, Y.H. Wang, B. Jiang, H.H. Wang, H.B. Song, Fog-Based marine environmental information monitoring toward ocean of Things, IEEE Internet Things J. 7 (5) (2019) 4238–4247,.
    [46]
    Q. Yuan, C. Ma, J.L. Liu, H.Q. Gui, M.Y. Li, S.L. Wang, Correlation analysis-based thermal error control with ITSA-GRU-A model and cloud-edge-physical collaboration framework, Adv. Eng. Inf. 54 (2022),.
    [47]
    M.A. Zamora-Izquierdo, J. Santa, J.A. Martínez, V. Martínez, A.F. Skarmeta, Smart farming IoT platform based on edge and cloud computing, Biosyst. Eng. 177 (2019) 4–17,.
    [48]
    S. Zeng, C. Ma, J.L. Liu, M.Y. Li, H.Q. Gui, Sequence-to-sequence based LSTM network modeling and its application in thermal error control framework, Appl. Soft Comput. 138 (2023),.
    [49]
    Y. Zhang, R.R. Zhang, Q.F. Ma, Y.H. Wang, Q.Q. Wang, Z.H. Huang, L.Y. Huang, A feature selection and multi-model fusion-based approach of predicting air quality, ISA Trans. 100 (2020) 210–220,.
    [50]
    L. Zhang, J.L. Liu, C. Ma, H.Q. Gui, Intelligent integrated framework towards high-accuracy machining, Eng. Sci. Technol. 40 (2023),.
    [51]
    L. Zhang, C. Ma, J.L. Liu, H.Q. Gui, S.L. Wang, Implementation of precision machine tool thermal error compensation in edge-cloud-fog computing architecture, J. Manuf. Sci. Eng.-Trans. ASME. 145 (7) (2023),.

    Index Terms

    1. Thermal error prediction of precision boring machine tools based on extreme gradient boosting algorithm-improved sailed fish optimizer-bi-directional ordered neurons-long short-term memory neural network model and physical-edge-cloud system
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Engineering Applications of Artificial Intelligence
            Engineering Applications of Artificial Intelligence  Volume 127, Issue PA
            Jan 2024
            1599 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 01 February 2024

            Author Tags

            1. Precision boring machine
            2. Crucial error
            3. Sailed fish optimizer
            4. Long short-term memory
            5. Extreme gradient boosting

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 11 Aug 2024

            Other Metrics

            Citations

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media