Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

CyTRACK: : An open-source and user-friendly python toolbox for detecting and tracking cyclones

Published: 09 July 2024 Publication History

Abstract

This work introduces CyTRACK (Cyclone TRACKing framework), a new open-source, comprehensive and user-friendly Python toolbox for detecting and tracking cyclones in model and reanalysis datasets. The kernel of CyTRACK is based on detecting critical cyclone centres in the mean sea level pressure field at a single time slice, which are then filtered following several threshold parameters. This paper also compares ten years of CyTRACK outputs forced with the ERA5 reanalysis against best-track archives and available cyclones track datasets. The results reveal that CyTRACK can capture the inter-annual (year to year) and intra annual (seasonal cycle) variability of cyclone frequency, life cycle characteristics and spatial distribution of track densities. Largest differences were observed in the annual and seasonal frequency. In summary, CyTRACK provides a user-friendly framework for sensitivity analysis of several free parameters used to perform the tracking, and it is useful for case or climatological studies of cyclone features.

Highlights

CyTRACK is an open-source and user-friendly toolbox for tracking cyclones.
It can capture cyclone frequency, lifetime and spatial distribution.
It is useful for case or climatological studies of cyclone features.

References

[1]
G. Accarino, D. Donno, F. Immorlano, D. Elia, G. Aloisio, An ensemble machine learning approach for tropical cyclone localization and tracking from ERA5 reanalysis data, Earth Space Sci. 10 (11) (2023),.
[2]
M.G. Akperov, M.Y. Bardin, E.M. Volodin, G.S. Golitsyn, I.I. Mokhov, Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model, Izvestiya Atmos. Ocean. Phys. 43 (2007) 705–712,.
[3]
J. Albert, V.S. Gulakaram, N.K. Vissa, P.K. Bhaskaran, M.K. Dash, Recent warming trends in the Arabian sea: causative factors and physical mechanisms, Climate 11 (2) (2023) 35,.
[4]
L. Aragão, F. Porcù, Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset, Clim. Dynam. 58 (2022) 1293–1310,.
[5]
A.J. Baker, R. Schiemann, K.I. Hodges, M.E. Demory, M.S. Mizielinski, M.J. Roberts, et al., Enhanced climate change response of wintertime North Atlantic circulation, cyclonic activity, and precipitation in a 25-km-resolution global atmospheric model, J. Clim. 32 (22) (2019) 7763–7781,.
[6]
M.Y. Bardin, A.B. Polonsky, North Atlantic oscillation and synoptic variability in the European-Atlantic region in winter, Izvestiya Atmos. Ocean. Phys. 41 (2) (2005) 127–136.
[7]
R. Benestad, D. Chen, The use of a calculus-based cyclone identification method for generating storm statistics, Tellus 58 (2006) 473–486,.
[8]
S.S. Bell, S.S. Chand, K.J. Tory, C. Turville, Statistical assessment of the OWZ tropical cyclone tracking scheme in ERA-interim, J. Clim. 31 (2018) 2217–2232,.
[9]
E. Bevacqua, G. Zappa, T.G. Shepherd, Shorter cyclone clusters modulate changes in European wintertime precipitation extremes, Environ. Res. Lett. 15 (12) (2020),.
[10]
A.J. Bié, R. de Camargo, Tropical cyclones position and intensity in the Southwest Indian Ocean as represented by CFS and ERA5 atmospheric reanalysis datasets, Int. J. Climatol. 43 (10) (2023) 4532–4551,.
[11]
R. Blender, K. Fraedrich, F. Lunkeit, Identification of cyclone‐track regimes in the North Atlantic, Q. J. R. Meteorol. Soc. 123 (539) (1997) 727–741,.
[12]
S. Bourdin, S. Fromang, W. Dulac, J. Cattiaux, F. Chauvin, Intercomparison of four algorithms for detecting tropical cyclones using ERA5, Geosci. Model Dev. (GMD) 15 (2022) 6759–6786,.
[13]
J. Campins, A. Jansà, A. Genovés, Three-dimensional structure of western Mediterranean cyclones, Int. J. Climatol. 26 (2006) 323–343,.
[14]
J. Campins, A. Genovés, M.A. Picornell, A. Jansà, Climatology of Mediterranean cyclones using the ERA-40 dataset, Int. J. Climatol. 31 (2011) 1596–1614,.
[15]
A.A. Cardoso, R.P. da Rocha, N.M. Crespo, Synoptic climatology of subtropical cyclone impacts on near-surface winds over the South Atlantic basin, Earth Space Sci. 9 (2022),.
[16]
J. Cattiaux, F. Chauvin, O. Bousquet, S. Malardel, C.L. Tsai, Projected changes in the Southern Indian Ocean cyclone activity assessed from high-resolution experiments and CMIP5 models, J. Clim. 33 (12) (2020) 4975–4991,.
[17]
L. Cavicchia, H. von Storch, S. Gualdi, A long-term climatology of medicanes, Clim. Dynam. 43 (2014) 1183–1195,.
[18]
F. Chauvin, J.F. Royer, M. Déqué, Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution, Clim. Dynam. 27 (4) (2006) 377–399,.
[19]
D.R. Chavas, K.A. Emanuel, A QuikSCAT climatology of tropical cyclone size, Geophys. Res. Lett. 37 (18) (2010),.
[20]
D.R. Chavas, N. Lin, K. Emanuel, A model for the complete radial structure of the tropical cyclone wind field. Part I: comparison with observed structure, J. Atmos. Sci. 72 (9) (2015) 3647–3662,.
[21]
P. Coll-Hidalgo, A. Pérez-Alarcón, R. Nieto, Moisture sources for the precipitation of tropical-like cyclones in the Mediterranean Sea: a case of study, Atmosphere 13 (8) (2022) 1327,.
[22]
P. Coll-Hidalgo, A. Pérez-Alarcón, L. Gimeno, Origin of moisture for the precipitation produced by the exceptional winter storm formed over the Gulf of Mexico in March 1993, Atmosphere 13 (2022) 1154,.
[23]
A.D. Crawford, M.C. Serreze, Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity?, J. Clim. 29 (13) (2016) 4977–4993,.
[24]
A.D. Crawford, E.A. Schreiber, N. Sommer, M.C. Serreze, J.C. Stroeve, D.G. Barber, Sensitivity of Northern Hemisphere cyclone detection and tracking results to fine spatial and temporal resolution using ERA5, Mon. Weather Rev. 149 (8) (2021) 2581–2598,.
[25]
R.P. da Rocha, M.S. Reboita, L.F. Gozzo, L.M.M. Dutra, E.M. de Jesus, Subtropical cyclones over the oceanic basins: a review, Ann. NY Acad. Sci. 1436 (1) (2019) 138–156,.
[26]
E.M. de Jesus, R.P. da Rocha, N.M. Crespo, et al., Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections, Clim. Dynam. 58 (2022) 1221–1236,.
[27]
J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113,.
[28]
A. de la Vara, J. Gutiérrez‐Fernández, J.J. González‐Alemán, M.A. Gaertner, Characterization of medicanes with a minimal number of geopotential levels, Int. J. Climatol. 41 (5) (2021) 3300–3316,.
[29]
D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, et al., The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc. 137 (656) (2011) 553–597,.
[30]
A. Di Luca, J.P. Evans, A. Pepler, L. Alexander, D. Argüeso, Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products, J. Clim. 28 (24) (2014) 9530–9549,.
[31]
W. Dulac, J. Cattiaux, F. Chauvin, S. Bourdin, S. Fromang, Assessing the representation of tropical cyclones in ERA5 with the CNRM tracker, Clim. Dynam. 62 (2024) 223–238,.
[32]
E. Flaounas, L. Aragão, L. Bernini, S. Dafis, B. Doiteau, H. Flocas, et al., A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones, Weather Clim. Dynam. 4 (2023) 639–661,.
[33]
E. Flaounas, S. Davolio, S. Raveh-Rubin, F. Pantillon, M.M. Miglietta, M.A. Gaertner, et al., Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts, Weather Clim. Dyn. 3 (1) (2022) 173–208,.
[34]
E. Flaounas, V. Kotroni, K. Lagouvardos, I. Flaounas, CycloTRACK (v1. 0)–tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters, Geosci. Model Dev. (GMD) 7 (4) (2014) 1841–1853,.
[35]
E. Flaounas, S. Raveh-Rubin, H. Wernli, P. Drobinski, S. Bastin, The dynamical structure of intense Mediterranean cyclones, Clim. Dynam. 44 (2015) 2411–2427,.
[36]
E. Flaounas, F.D. Kelemen, H. Wernli, M.A. Gaertner, M. Reale, E. Sanchez-Gomez, P. Lionello, S. Calmanti, Z. Podrascanin, S. Somot, N. Akhtar, R. Romera, D. Conte, Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones, Clim. Dynam. 51 (2018) 1023–1040,.
[37]
M.Á. Gaertner, J.J. González-Alemán, R. Romera, M. Domínguez, V. Gil, E. Sánchez, et al., Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution, Clim. Dynam. 51 (2018) 1041–1057,.
[38]
S. Giffard-Roisin, M. Yang, G. Charpiat, C. Kumler-Bonfanti, B. Kégl, C. Monteleoni, Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data, Front. Big Data 3 (2020) 1,.
[39]
L.F. Gozzo, R.P. da Rocha, M.S. Reboita, S. Sugahara, Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study, J. Clim. 27 (2014) 8543–8562,.
[40]
L.F. Gozzo, R.P. da Rocha, L. Gimeno, A. Drumond, Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean, J. Geophys. Res. Atmos. 122 (2017) 5636–5653,.
[41]
C.B. Gramcianinov, R.M. Campos, R. De Camargo, K.I. Hodges, C.G. Soares, P.L. da Silva Dias, Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases, Ocean Eng. 216 (2020),.
[42]
J. Grieger, G.C. Leckebusch, C.C. Raible, I. Rudeva, I. Simmonds, Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent, Tellus Dyn. Meteorol. Oceanogr. 70 (1) (2018) 1–18,.
[43]
R.E. Hart, A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Weather Rev. 131 (2003) 585–616,.
[44]
M.K. Hawcroft, L.C. Shaffrey, K.I. Hodges, H.F. Dacre, How much Northern Hemisphere precipitation is associated with extratropical cyclones?, Geophys. Res. Lett. 39 (24) (2012),.
[45]
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc. 146 (2020) 1999–2049,.
[46]
K. Hodges, A. Cobb, P.L. Vidale, How well are tropical cyclones represented in reanalysis datasets?, J. Clim. 30 (2017) 5243–5264,.
[47]
K.I. Hodges, A general method for tracking analysis and its application to meteorological data, Mon. Weather Rev. 122 (1994) 2573–2586,.
[48]
K.I. Hodges, Feature tracking on the unit sphere, Mon. Weather Rev. 123 (1995) 3458–3465,.
[49]
K.I. Hodges, Adaptive constraints for feature tracking, Mon.Wea. Rev. 127 (1999) 1362–1373,.
[50]
K.I. Hodges, B.J. Hoskins, J. Boyle, C. Thorncroft, A comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves, Mon. Weather Rev. 131 (9) (2003) 2012–2037,.
[51]
M.G. Hofsteenge, R.G. Graversen, J.H. Rydsaa, et al., The impact of atmospheric Rossby waves and cyclones on the Arctic sea ice variability, Clim. Dynam. 59 (2022) 579–594,.
[52]
M. Horn, et al., Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations, J. Clim. 27 (2014) 9197–9213,.
[53]
B.J. Hoskins, K.I. Hodges, New perspectives on the Northern Hemisphere winter storm tracks, J. Atmos. Sci. 59 (6) (2002) 1041–1061,.
[54]
M. Inatsu, The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones, Atmos. Sci. Lett. 10 (4) (2009) 267–272,.
[55]
P.J. Klotzbach, M.M. Bell, S.G. Bowen, E.J. Gibney, K.R. Knapp, C.J. Schreck, Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind, Bull. Am. Meteorol. Soc. 101 (2020) E830–E846,.
[56]
K.R. Knapp, M.C. Kruk, D.H. Levinson, H.J. Diamond, C.J. Neumann, The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone data, Bull. Am. Meteorol. Soc. 91 (2010) 363–376,.
[57]
J.A. Knaff, S.P. Longmore, D.A. Molenar, An objective satellite-based tropical cyclone size climatology, J. Clim. 27 (1) (2014) 455–476,.
[58]
G. Kotsias, C.J. Lolis, N. Hatzianastassiou, N. Bakas, P. Lionello, A. Bartzokas, Objective climatology and classification of the Mediterranean cyclones based on the ERA5 data set and the use of the results for the definition of seasons, Theor. Appl. Climatol. 152 (1–2) (2023) 581–597,.
[59]
C. Kumler-Bonfanti, J. Stewart, D. Hall, M. Govett, Tropical and extratropical cyclone detection using deep learning, J. Appl. Meteorol. Climatol. 59 (12) (2020) 1971–1985,.
[60]
Y. Lai, J. Li, X. Gu, C. Liu, Y.D. Chen, Global compound floods from precipitation and storm surge: hazards and the roles of cyclones, J. Clim. 34 (2021) 8319–8339,.
[61]
C.W. Landsea, J.L. Franklin, Atlantic hurricane database uncertainty and presentation of a new database format, Mon. Weather Rev. 141 (2013) 3576–3592,.
[62]
P. Lionello, F. Dalan, E. Elvini, Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios, Clim. Res. 22 (2002) 147–159,.
[63]
P. Lionello, I.F. Trigo, V. Gil, M.L. Liberato, K.M. Nissen, J.G. Pinto, et al., Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria, Tellus A: Dyn. Meteorol. Oceanogr. 68 (1) (2016) 29391,.
[64]
X. Lu, H. Yu, M. Ying, Western North pacific tropical cyclone database created by the China meteorological administration, Adv. Atmos. Sci. 38 (2021) 690–699,.
[65]
P. Malakar, A.P. Kesarkar, J.N. Bhate, V. Singh, A. Deshamukhya, Comparison of reanalysis data sets to comprehend the evolution of tropical cyclones over North Indian Ocean, Earth Space Sci. 7 (2) (2020),.
[66]
T. Marchok, Important factors in the tracking of tropical cyclones in operational models, J. Appl. Meteorol. Climatol. 60 (2021) 1265–1284,.
[67]
N.R. Massey, Feature tracking in high-resolution regional climate data, Comput. Geosci. 93 (2016) 36–44,.
[68]
M.M. Miglietta, R. Rotunno, Development mechanisms for Mediterranean tropical‐like cyclones (medicanes), Q. J. R. Meteorol. Soc. 145 (721) (2019) 1444–1460,.
[69]
A. Munsi, A. Kesarkar, J. Bhate, et al., Simulated dynamics and thermodynamics processes leading to the rapid intensification of rare tropical cyclones over the North Indian Oceans, J. Earth Syst. Sci. 131 (2022) 211,.
[70]
A. Murata, H. Sasaki, H. Kawase, M. Nosaka, The development of a resolution-independent tropical cyclone detection scheme for high-resolution climate model simulations, J. Meteorol. Soc. Ser. II 97 (2) (2019) 519–531,.
[71]
H. Murakami, Tropical cyclones in reanalysis data sets, Geophys. Res. Lett. 41 (2014) 2133–2141,.
[72]
P.T. Nastos, K. Karavana-Papadimou, I.T. Matsangouras, Mediterranean tropical-like cyclones: impacts and composite daily means and anomalies of synoptic patterns, Atmos. Res. 208 (2018) 156–166,. 2018.
[73]
U. Neu, M.G. Akperov, N. Bellenbaum, et al., IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms, Bull. Am. Meteorol. Soc. 94 (2013) 529–547,.
[74]
A. Pérez-Alarcón, J.C. Fernandez-Alvarez, P. Coll-Hidalgo, Global increase of the intensity of tropical cyclones under global warming based on their maximum potential intensity and CMIP6 models, Environ. Process. 10 (2023) 36,.
[75]
A. Pérez-Alarcón, P. Coll-Hidalgo, J.C. Fernández-Alvarez, R.M. Trigo, R. Nieto, L. Gimeno, The rare case of Hurricane Catarina (2004) over the South Atlantic Ocean: the origin of its precipitation through a Lagrangian approach, Q. J. R. Meteorol. Soc. 149 (752) (2023) 1038–1055,.
[76]
A. Pérez-Alarcón, R. Sorí, J.C. Fernández-Alvarez, R. Nieto, L. Gimeno, Comparative climatology of outer tropical cyclone size using radial wind profiles, Weather Clim. Extrem. 33 (2021),.
[77]
M.A. Picornell, A. Jansà, A. Genovés, J. Campins, Automated database of mesocyclones from the HIRLAM(INM) 0.5 analyses in the Western Mediterranean, Int. J. Climatol. 21 (2001) 335–354,.
[78]
J.G. Pinto, T. Spangehl, U. Ulbrich, P. Speth, Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology, Meteorol. Z. 14 (6) (2005) 823–838,.
[79]
E. Pravia-Sarabia, J.J. Gómez-Navarro, P. Jiménez-Guerrero, J.P. Montávez, TITAM (v1. 0): the time-independent tracking algorithm for medicanes, Geosci. Model Dev. (GMD) 13 (12) (2020) 6051–6075,.
[80]
M.D.K. Priestley, D. Ackerley, J.L. Catto, K.I. Hodges, R.E. McDonald, R.W. Lee, An overview of the extratropical storm tracks in CMIP6 historical simulations, J. Clim. 33 (2020) 6315–6343,.
[81]
J.F. Quinting, J.L. Catto, M.J. Reeder, Synoptic climatology of hybrid cyclones in the Australian region, Q. J. R. Meteorol. Soc. 145 (718) (2018) 288–302,.
[82]
P.H. Raavi, K.J.E. Walsh, Sensitivity of tropical cyclone formation to resolution‐dependent and independent tracking schemes in high‐resolution climate model simulations, Earth Space Sci. 7 (3) (2020),.
[83]
F. Ragone, M. Mariotti, A. Parodi, J. von Hardenberg, C. Pasquero, A climatological study of Western Mediterranean Medicanes in numerical simulations with explicit and parameterized convection, Atmosphere 9 (2018) 397,.
[84]
C.C. Raible, P.M. Della-Marta, C. Schwierz, H. Wernli, R. Blender, Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses, Mon. Weather Rev. 136 (2008) 880–897,.
[85]
M. Reale, P. Lionello, Synoptic climatology of winter intense precipitation events along the Mediterranean coasts, Nat. Hazards Earth Syst. Sci. 13 (2013) 1707–1722,.
[86]
M. Reale, W.D. Cabos Narvaez, L. Cavicchia, D. Conte, E. Coppola, et al., Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models, Clim. Dynam. 58 (2022) 2501–2524,.
[87]
M.S. Reboita, R.P. Da Rocha, D.M.D. Oliveira, Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean, Atmosphere 10 (1) (2019) 6,.
[88]
M.J. Roberts, J. Camp, J. Seddon, P.L. Vidale, K. Hodges, B. Vanniere, et al., Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble, J. Clim. 33 (2020) 2557–2583,.
[89]
M.J. Roberts, P.L. Vidale, M.S. Mizielinski, M.E. Demory, R. Schiemann, J. Strachan, et al., Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models, J. Clim. 28 (2) (2015) 574–596,.
[90]
M. Rohrer, O. Martius, C.C. Raible, S. Brönnimann, Sensitivity of blocks and cyclones in ERA5 to spatial resolution and definition, Geophys. Res. Lett. 47 (7) (2020),. e2019GL085582.
[91]
R. Romero, K. Emanuel, Medicane risk in a changing climate, J. Geophys. Res. Atmos. 118 (12) (2013) 5992–6001,.
[92]
I. Rudeva, S.K. Gulev, Climatology of cyclone size characteristics and their changes during the cyclone life cycle, Mon. Weather Rev. 135 (2007) 2568–2587,.
[93]
E. Sanchez-Gomez, S. Somot, Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain, Clim. Dynam. 51 (2018) 1005–1021,.
[94]
B.A. Schenkel, N. Lin, D. Chavas, M. Oppenheimer, A. Brammer, Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT data, J. Clim. 30 (21) (2017) 8745–8762,.
[95]
M.C. Serreze, Climatological aspects of cyclone development and decay in the Arctic, Atmos.-Ocean 33 (1) (1995) 1–23,.
[96]
Z. Shen, S. Zhang, The generation mechanism of cold eddies and the related heat flux exchanges in the upper ocean during two sequential tropical cyclones, Front. Mar. Sci. 9 (2022),.
[97]
I. Simmonds, R. Murray, A numerical scheme for tracking cyclone centres from digital data, part 1, Aust. Meteorol. Mag. 39 (1991) 155–166.
[98]
V.A. Sinclair, H.F. Dacre, Which extratropical cyclones contribute most to the transport of moisture in the Southern Hemisphere?, J. Geophys. Res. Atmos. 124 (5) (2019) 2525–2545,.
[99]
M. Sprenger, G. Fragkoulidis, H. Binder, M. Croci-Maspoli, P. Graf, C.M. Grams, P. Knippertz, E. Madonna, S. Schemm, B. Škerlak, H. Wernli, Global climatologies of eulerian and Lagrangian flow features based on ERA-Interim, Bull. Am. Meteorol. Soc. 98 (2017) 1739–1748,.
[100]
N. Tilinina, S.K. Gulev, I. Rudeva, P. Koltermann, Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses, J. Clim. 26 (17) (2013) 6419–6438,.
[101]
K.J. Tory, S.S. Chand, R.A. Dare, J.L. McBride, An assessment of a model-, grid-, and basin-independent tropical cyclone detection scheme in selected CMIP3 global climate models, J. Clim. 26 (2013) 5508–5522,.
[102]
K.J. Tory, S.S. Chand, R.A. Dare, J.L. McBride, The development and assessment of a model-, grid-, and basin-independent tropical cyclone detection scheme, J. Clim. 26 (15) (2013) 5493–5507,.
[103]
M. Tous, G. Zappa, R. Romero, L. Shaffrey, P.L. Vidale, Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model, Clim. Dynam. 47 (2016) 1913–1924,.
[104]
I.F. Trigo, Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses, Clim. Dynam. 26 (2–3) (2006) 127–143,.
[105]
P.A. Ullrich, C.M. Zarzycki, TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev. (GMD) 10 (2017) 1069–1090,.
[106]
P.A. Ullrich, C.M. Zarzycki, E.E. McClenny, M.C. Pinheiro, A.M. Stansfield, K.A. Reed, TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets, Geosci. Model Dev. (GMD) 14 (2021) 5023–5048,.
[107]
P. Uotila, T. Vihma, M. Tsukernik, Close interactions between the Antarctic cyclone budget and large‐scale atmospheric circulation, Geophys. Res. Lett. 40 (12) (2013) 3237–3241,.
[108]
G.A. Vecchi, T. Delworth, R. Gudgel, S. Kapnick, A. Rosati, A.T. Wittenberg, et al., On the seasonal forecasting of regional tropical cyclone activity. J, Clim. Past 27 (21) (2014) 7994–8016,.
[109]
F. Vitart, T.N. Stockdale, Seasonal forecasting of tropical storms using coupled GCM integrations, Mon. Weather Rev. 129 (10) (2001) 2521–2537,.
[110]
K.J.E. Walsh, M. Fiorino, C.W. Landsea, K.L. McInnes, Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses, J. Clim. 20 (2007) 2307–2314,.
[111]
X.L. Wang, Y. Feng, R. Chan, V. Isaac, Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets, Atmos. Res. 181 (2016) 133–153,.
[112]
X.L. Wang, Y. Feng, G.P. Compo, V.R. Swail, F.W. Zwiers, R.J. Allan, P.D. Sardeshmukh, Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis, Clim. Dynam. 40 (2013) 2775–2800,.
[113]
X.L. Wang, V.R. Swail, F.W. Zwiers, Climatology and changes of extratropical cyclone activity: comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001, J. Clim. 19 (13) (2006) 3145–3166,.
[114]
H. Wernli, C. Schwierz, Surface cyclones in the ERA-40 dataset (1958–2001). Part I: novel identification method and global climatology, J. Atmos. Sci. 63 (10) (2006) 2486–2507,.
[115]
L. Xia, M. Zahn, K. Hodges, F. Feser, H. Storch, A comparison of two identification and tracking methods for polar lows, Tellus Dyn. Meteorol. Oceanogr. 64 (1) (2012),.
[116]
M. Yamaguchi, J.C. Chan, I.J. Moon, K. Yoshida, R. Mizuta, Global warming changes tropical cyclone translation speed, Nat. Commun. 11 (1) (2020) 47,.
[117]
J. Yang, Z. Duan, Y. Chen, J. Ou, Assessing parametric rainfall models in reproducing tropical cyclone rainfall characteristics, Atmos. Res. 288 (2023),.
[118]
M. Ying, W. Zhang, H. Yu, X.Q. Lu, J.X. Feng, Y.X. Fan, Y.T. Zhu, D.Q. Chen, An overview of the China Meteorological Administration tropical cyclone database, J. Atmos. Ocean. Technol. 31 (2014) 287–301,.
[119]
C.M. Zarzycki, P.A. Ullrich, K.A. Reed, Metrics for evaluating tropical cyclones in climate data, J. Appl. Meteorol. Climatol. 60 (5) (2021) 643–660,.
[120]
W. Zhang, G. Villarini, E. Scoccimarro, F. Napolitano, Examining the precipitation associated with medicanes in the high‐resolution ERA‐5 reanalysis data, Int. J. Climatol. 41 (2020) E126–E132,.
[121]
B. Ziv, T. Harpaz, H. Saaroni, R. Blender, A new methodology for identifying daughter cyclogenesis: application for the Mediterranean Basin, Int. J. Climatol. 35 (2015) 3847–3861,.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Environmental Modelling & Software
Environmental Modelling & Software  Volume 176, Issue C
May 2024
381 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 09 July 2024

Author Tags

  1. Cyclones
  2. Detection and tracking
  3. Python
  4. Reanalysis dataset
  5. Climate models

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media