Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Drug-target continuous binding affinity prediction using multiple sources of information

Published: 30 December 2021 Publication History

Highlights

Integrating various sources of information to predict drug-target binding affinity.
Takes advantages of both similarities and features.
Gradient boosting regression model performs well in predicting new drug and new.
Using various sources boost the accuracy of drug-target identification.

Abstract

Drug-target binding affinity prediction has a significant role in the search for new drugs or novel targets for existing drugs. The vast majority of recent computational approaches, presented for the task of drug-target binding affinity prediction, make use of a single source to measure drug-drug or protein-protein similarities. Incorporating various information sources is of the essence for improving the accuracy of drug-target prediction. The main objective of this research is to propose a method for combining the information provided from various similarity measures for drug-drug and protein-protein similarities and to show that this leads to better prediction performance. For this purpose, we propose a method that makes use of five drug-drug and five protein-protein similarity measures simultaneously to predict the binding affinity value of an input query drug-protein interaction. In the proposed method, using each pair of drug-drug and protein-protein similarity measures, k-nearest neighbor algorithm is used to find k drug-protein pairs most similar to the input interaction. The information regarding the binding affinity values of neighbors and their similarities are fed as features to a gradient boosting machine to construct the regression model. To assess the performance of our method in comparison with state-of-the-art methods in the literature, three related benchmark datasets were used. The experimental results in various settings (pairwise, new drug, and new target scenarios) indicate the superiority of the proposed method in comparison with other methods proposed in the literature.

References

[1]
Abbasi, K., Razzaghi, P., Poso, A., Amanlou, M., Ghasemi, J. B., & Masoudi-Nejad, A. (2020). DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa544.
[2]
M.I. Davis, J.P. Hunt, S. Herrgard, P. Ciceri, L.M. Wodicka, G. Pallares, …., P.P. Zarrinkar, Comprehensive analysis of kinase inhibitor selectivity, Nature Biotechnology 29 (11) (2011) 1046–1051,.
[3]
H. Ding, I. Takigawa, H. Mamitsuka, S. Zhu, Similarity-based machine learning methods for predicting drug-target interactions: A brief review, Brief Bioinform 15 (5) (2014) 734–747,.
[4]
Ezzat, A., Wu, M., Li, X.-L., & Kwoh, C.-K. (2018). Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bby002.
[5]
Feng, Q., Dueva, E. V., Cherkasov, A., & Ester, M. (2018). PADME: A Deep Learning-based Framework for Drug-Target Interaction Prediction. CoRR, abs/1807.09741.
[6]
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine J Annals of Statistics, 29, 1189--1232https://doi.org/10.1214/aos/1013203451.
[7]
M. Gönen, G. Heller, Concordance probability and discriminatory power in proportional hazards regression, Biometrika 92 (4) (2005) 965–970,.
[8]
Hao, M., Bryant, S. H., & Wang, Y. (2017). Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Scientific Reports, 7, 40376-40376. https://doi.org/10.1038/srep40376.
[9]
M. Hattori, Y. Okuno, S. Goto, M. Kanehisa, Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways, Journal of the American Chemical Society 125 (39) (2003) 11853–11865,.
[10]
He, T., Heidemeyer, M., Ban, F., Cherkasov, A., & Ester, M. (2017). SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. Journal of cheminformatics, 9(1), 24-24. https://doi.org/10.1186/s13321-017-0209-z.
[11]
M.C. Hutter, The current limits in virtual screening and property prediction, Future Medicinal Chemistry 10 (13) (2018) 1623–1635,.
[12]
P. Jaccard, Nouvelles recherches sur la distribution florale, Rouge. (1908).
[13]
M. Jiang, Z. Li, S. Zhang, S. Wang, X. Wang, Q. Yuan, Z. Wei, Drug–target affinity prediction using graph neural network and contact maps [10.1039/D0RA02297G]. RSC, Advances 10 (35) (2020) 20701–20712,.
[14]
A.C. Kaushik, A. Mehmood, X. Dai, D.-Q. Wei, A comparative chemogenic analysis for predicting Drug-Target Pair via Machine Learning Approaches, Scientific Reports 10 (1) (2020) 6870,.
[15]
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res, 47(D1), D1102-d1109. https://doi.org/10.1093/nar/gky1033.
[16]
W. Ma, L. Yang, L. He, Overview of the detection methods for equilibrium dissociation constant K(D) of drug-receptor interaction, Journal of Pharmaceutical Analysis 8 (3) (2018) 147–152,.
[17]
H. Matthews, J. Hanison, N. Nirmalan, “Omics”-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future Perspectives. Proteomes 4 (3) (2016) 28,.
[18]
J.P. Mei, C.K. Kwoh, P. Yang, X.L. Li, J. Zheng, Drug-target interaction prediction by learning from local information and neighbors, Bioinformatics 29 (2) (2013) 238–245,.
[19]
J.T. Metz, E.F. Johnson, N.B. Soni, P.J. Merta, L. Kifle, P.J. Hajduk, Navigating the kinome, Nature Chemical Biology 7 (4) (2011) 200–202,.
[20]
R.C. Mohs, N.H. Greig, Drug discovery and development: Role of basic biological research, Alzheimer's & dementia (New York, N. Y.) 3 (4) (2017) 651–657,.
[21]
A. Mongia, A. Majumdar, I. Olier, Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization, PLoS ONE 15 (1) (2020) e0226484,.
[22]
A.C. Nascimento, R.B. Prudencio, I.G. Costa, A multiple kernel learning algorithm for drug-target interaction prediction, BMC Bioinformatics 17 (2016) 46,.
[23]
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21-21. https://doi.org/10.3389/fnbot.2013.00021.
[24]
Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2020). GEFA: Early Fusion Approach in Drug-Target Affinity Prediction. arXiv preprint arXiv:2009.12146.
[25]
H. Öztürk, A. Özgür, E. Ozkirimli, DeepDTA: Deep drug–target binding affinity prediction, Bioinformatics 34 (17) (2018) i821–i829,.
[26]
H. Öztürk, E. Ozkirimli, A. Özgür, A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction, BMC Bioinformatics 17 (1) (2016) 128,.
[27]
Öztürk, H., Ozkirimli, E., & Özgür, A. (2019). WideDTA: prediction of drug-target binding affinity. arXiv Prepr.
[28]
T. Pahikkala, A. Airola, S. Pietilä, S. Shakyawar, A. Szwajda, J. Tang, T. Aittokallio, Toward more realistic drug-target interaction predictions, Briefings in Bioinformatics 16 (2) (2015) 325–337,.
[29]
L. Perlman, A. Gottlieb, N. Atias, E. Ruppin, R. Sharan, Combining drug and gene similarity measures for drug-target elucidation, Journal of computational biology 18 (2) (2011) 133–145.
[30]
K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, R.N. Das, Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data, Journal of Computational Chemistry 34 (12) (2013) 1071–1082,.
[31]
T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology 147 (1) (1981) 195–197,.
[32]
C.D. Sutton, Classification and regression trees, bagging, and boosting, Handbook of statistics 24 (2005) 303–329.
[33]
J. Tang, A. Szwajda, S. Shakyawar, T. Xu, P. Hintsanen, K. Wennerberg, T. Aittokallio, Making sense of large-scale kinase inhibitor bioactivity data sets: A comparative and integrative analysis, Journal of Chemical Information and Modeling 54 (3) (2014) 735–743,.
[34]
Thafar, M., Raies, A. B., Albaradei, S., Essack, M., & Bajic, V. B. (2019). Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Frontiers in chemistry, 7, 782-782. https://doi.org/10.3389/fchem.2019.00782.
[35]
T. van Laarhoven, S.B. Nabuurs, E. Marchiori, Gaussian interaction profile kernels for predicting drug–target interaction, Bioinformatics 27 (21) (2011) 3036–3043,.
[36]
D. Vidal, M. Thormann, M. Pons, LINGO, an Efficient Holographic Text Based Method To Calculate Biophysical Properties and Intermolecular Similarities, Journal of Chemical Information and Modeling 45 (2) (2005) 386–393,.
[37]
D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, Journal of Chemical Information and Computer Sciences 28 (1) (1988) 31–36,.
[38]
Weininger, D., Weininger, A., & Weininger, J. L. (1989). SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences, 29(2), 97-101. https://doi.org/10.1021/ci00062a008.
[39]
Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, Prediction of drug–target interaction networks from the integration of chemical and genomic spaces, Bioinformatics 24 (13) (2008) i232–i240,.
[40]
L. Zhao, J. Wang, L. Pang, Y. Liu, J. Zhang, GANsDTA: Predicting Drug-Target Binding Affinity Using GANs [Original Research], Frontiers in Genetics 10 (1243) (2020),.
[41]
Q. Zhao, F. Xiao, M. Yang, Y. Li, J. Wang, AttentionDTA: Prediction of drug–target binding affinity using attention model, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019.
[42]
X. Zheng, H. Ding, H. Mamitsuka, S. Zhu, Collaborative matrix factorization with multiple similarities for predicting drug-target interactions (2013),.

Cited By

View all
  • (2024)Exploiting Pre-trained Models for Drug Target Affinity Prediction with Nearest NeighborsProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679704(1856-1866)Online publication date: 21-Oct-2024
  • (2024)GINCM-DTAExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121274236:COnline publication date: 1-Feb-2024
  • (2023)TripletMultiDTIExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.120754232:COnline publication date: 1-Dec-2023
  • Show More Cited By

Index Terms

  1. Drug-target continuous binding affinity prediction using multiple sources of information
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Expert Systems with Applications: An International Journal
            Expert Systems with Applications: An International Journal  Volume 186, Issue C
            Dec 2021
            1489 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 30 December 2021

            Author Tags

            1. Continuous binding affinity
            2. Drug-target interaction
            3. Binding affinity prediction
            4. Gradient boosting machine
            5. K-nearest neighbor
            6. Combining information

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 25 Dec 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Exploiting Pre-trained Models for Drug Target Affinity Prediction with Nearest NeighborsProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679704(1856-1866)Online publication date: 21-Oct-2024
            • (2024)GINCM-DTAExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121274236:COnline publication date: 1-Feb-2024
            • (2023)TripletMultiDTIExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.120754232:COnline publication date: 1-Dec-2023
            • (2023)Utilizing deep learning to explore chemical space for drug lead optimizationExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.120592229:PAOnline publication date: 1-Nov-2023
            • (2023)DeConDFFuse Expert Systems with Applications: An International Journal10.1016/j.eswa.2023.120238227:COnline publication date: 1-Oct-2023

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media