A mixture of shallow neural networks for virtual sensing: : Could perform better than deep neural networks
References
Index Terms
- A mixture of shallow neural networks for virtual sensing: Could perform better than deep neural networks
Recommendations
Data augmentation and semi-supervised learning for deep neural networks-based text classifier
SAC '20: Proceedings of the 35th Annual ACM Symposium on Applied ComputingUser feedback is essential for understanding user needs. In this paper, we use free-text obtained from a survey on sleep-related issues to build a deep neural networks-based text classifier. However, to train the deep neural networks model, a lot of ...
Deep Elman recurrent neural networks for statistical parametric speech synthesis
Owing to the success of deep learning techniques in automatic speech recognition, deep neural networks (DNNs) have been used as acoustic models for statistical parametric speech synthesis (SPSS). DNNs do not inherently model the temporal structure in ...
Symmetric Power Activation Functions for Deep Neural Networks
LOPAL '18: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and ApplicationsCommon nonlinear activation functions with large saturation regions, like Sigmoid and Tanh, used for Deep Neural Networks (DNNs) can not guarantee useful and efficient training since they suffer from vanishing gradients problem. Rectified Linear Units ...
Comments
Information & Contributors
Information
Published In
Publisher
Pergamon Press, Inc.
United States
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0