LoopNet for fine-grained fashion attributes editing
References
[1]
Abdal, R., Qin, Y., & Wonka, P. (2019). Image2stylegan: How to embed images into the stylegan latent space?. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4432–4441).
[2]
Abdal, R., Qin, Y., & Wonka, P. (2020). Image2stylegan++: How to edit the embedded images?. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8296–8305).
[3]
Alaluf, Y., Patashnik, O., & Cohen-Or, D. (2021). Restyle: A residual-based stylegan encoder via iterative refinement. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6711–6720).
[4]
Alaluf, Y., Tov, O., Mokady, R., Gal, R., & Bermano, A. (2022). Hyperstyle: Stylegan inversion with hypernetworks for real image editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 18511–18521).
[5]
Bau D., Strobelt H., Peebles W., Wulff J., Zhou B., Zhu J.-Y., et al., Semantic photo manipulation with a generative image prior, 2020, arXiv preprint arXiv:2005.07727.
[6]
Bauer E., Kohavi R., An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning 36 (1999) 105–139.
[7]
Brock A., Donahue J., Simonyan K., Large scale GAN training for high fidelity natural image synthesis, 2018, arXiv preprint arXiv:1809.11096.
[8]
Brooks, T., Holynski, A., & Efros, A. A. (2023). Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 18392–18402).
[9]
Canny J., A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence (6) (1986) 679–698.
[10]
Chen Z., Jiang R., Duke B., Zhao H., Aarabi P., Exploring gradient-based multi-directional controls in gans, in: European conference on computer vision, Springer, 2022, pp. 104–119.
[11]
Chui M., Hazan E., Roberts R., Singla A., Smaje K., The economic potential of generative AI, 2023.
[12]
Creswell A., Bharath A.A., Inverting the generator of a generative adversarial network, IEEE Transactions on Neural Networks and Learning Systems 30 (7) (2018) 1967–1974.
[13]
Dalva Y., Altındiş S.F., Dundar A., Vecgan: Image-to-image translation with interpretable latent directions, in: European conference on computer vision, Springer, 2022, pp. 153–169.
[14]
Epstein Z., Hertzmann A., of Human Creativity I., Akten M., Farid H., Fjeld J., et al., Art and the science of generative AI, Science 380 (6650) (2023) 1110–1111.
[15]
Fu J., Li S., Jiang Y., Lin K.-Y., Qian C., Loy C.-C., et al., StyleGAN-human: A data-centric odyssey of human generation, 2022, arXiv preprint, arXiv:2204.11823.
[16]
Goetschalckx, L., Andonian, A., Oliva, A., & Isola, P. (2019). Ganalyze: Toward visual definitions of cognitive image properties. In Proceedings of the ieee/cvf international conference on computer vision (pp. 5744–5753).
[17]
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., et al., Generative adversarial networks, Communications of the ACM 63 (11) (2020) 139–144.
[18]
Guo Z., Shao M., Li S., Image-to-image translation using an offset-based multi-scale codes GAN encoder, Visual Computer 40 (2) (2024) 699–715.
[19]
Härkönen E., Hertzmann A., Lehtinen J., Paris S., Ganspace: Discovering interpretable gan controls, Advances in Neural Information Processing Systems 33 (2020) 9841–9850.
[20]
Hu, X., Huang, Q., Shi, Z., Li, S., Gao, C., Sun, L., et al. (2022). Style transformer for image inversion and editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11337–11346).
[21]
Johnson J., Alahi A., Fei-Fei L., Perceptual losses for real-time style transfer and super-resolution, in: Computer vision–ECCV 2016: 14th European conference, amsterdam, the netherlands, October 11-14, 2016, proceedings, part II 14, Springer, 2016, pp. 694–711.
[22]
Jovanovic M., Campbell M., Generative artificial intelligence: Trends and prospects, Computer 55 (10) (2022) 107–112.
[23]
Karras T., Aila T., Laine S., Lehtinen J., Progressive growing of gans for improved quality, stability, and variation, 2017, arXiv preprint arXiv:1710.10196.
[24]
Karras T., Aittala M., Laine S., Härkönen E., Hellsten J., Lehtinen J., et al., Alias-free generative adversarial networks, Advances in Neural Information Processing Systems 34 (2021) 852–863.
[25]
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4401–4410).
[26]
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8110–8119).
[27]
Khodadadeh, S., Ghadar, S., Motiian, S., Lin, W.-A., Bölöni, L., & Kalarot, R. (2022). Latent to latent: A learned mapper for identity preserving editing of multiple face attributes in stylegan-generated images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 3184–3192).
[28]
Kwon G., Ye J.C., One-shot adaptation of gan in just one clip, IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).
[29]
Li, Z., Cao, M., Wang, X., Qi, Z., Cheng, M.-M., & Shan, Y. (2024). Photomaker: Customizing realistic human photos via stacked id embedding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8640–8650).
[30]
Lu, Y., Tai, Y.-W., & Tang, C.-K. (2018). Attribute-guided face generation using conditional cyclegan. In Proceedings of the European conference on computer vision (pp. 282–297).
[31]
Pan, X., Tewari, A., Leimkühler, T., Liu, L., Meka, A., & Theobalt, C. (2023). Drag your gan: Interactive point-based manipulation on the generative image manifold. In ACM SIGGRAPH 2023 conference proceedings (pp. 1–11).
[32]
Parihar, R., Dhiman, A., & Karmali, T. (2022). Everything is there in latent space: Attribute editing and attribute style manipulation by stylegan latent space exploration. In Proceedings of the 30th ACM international conference on multimedia (pp. 1828–1836).
[33]
Pehlivan, H., Dalva, Y., & Dundar, A. (2023). Styleres: Transforming the residuals for real image editing with stylegan. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1828–1837).
[34]
Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., et al. (2021). Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2287–2296).
[35]
Roich D., Mokady R., Bermano A.H., Cohen-Or D., Pivotal tuning for latent-based editing of real images, ACM Transactions on Graphics (TOG) 42 (1) (2022) 1–13.
[36]
Rostamzadeh N., Hosseini S., Boquet T., Stokowiec W., Zhang Y., Jauvin C., et al., Fashion-gen: The generative fashion dataset and challenge, 2018, arXiv preprint arXiv:1806.08317.
[37]
Shen, Y., Gu, J., Tang, X., & Zhou, B. (2020). Interpreting the latent space of gans for semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9243–9252).
[38]
Shen Y., Yang C., Tang X., Zhou B., Interfacegan: Interpreting the disentangled face representation learned by gans, IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (4) (2020) 2004–2018.
[39]
Tov O., Alaluf Y., Nitzan Y., Patashnik O., Cohen-Or D., Designing an encoder for stylegan image manipulation, ACM Transactions on Graphics 40 (4) (2021) 1–14.
[40]
Tutsoy O., Koç G.G., Deep self-supervised machine learning algorithms with a novel feature elimination and selection approaches for blood test-based multi-dimensional health risks classification, BMC Bioinformatics 25 (1) (2024) 103.
[41]
Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13 (4) (2004) 600–612.
[42]
Wang, T., Zhang, Y., Fan, Y., Wang, J., & Chen, Q. (2022). High-fidelity gan inversion for image attribute editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11379–11388).
[43]
Xu J., Liu X., Wu Y., Tong Y., Li Q., Ding M., et al., Imagereward: Learning and evaluating human preferences for text-to-image generation, Advances in Neural Information Processing Systems 36 (2024).
[44]
Yang, X., Xu, X., & Chen, Y. (2023). Out-of-Domain GAN Inversion via Invertibility Decomposition for Photo-Realistic Human Face Manipulation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 7492–7501).
[45]
Yao X., Newson A., Gousseau Y., Hellier P., A style-based gan encoder for high fidelity reconstruction of images and videos, in: European conference on computer vision, Springer, 2022, pp. 581–597.
[46]
Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 586–595).
[47]
Zhu J.-Y., Krähenbühl P., Shechtman E., Efros A.A., Generative visual manipulation on the natural image manifold, in: Computer vision–ECCV 2016: 14th European conference, amsterdam, the netherlands, October 11-14, 2016, proceedings, part v 14, Springer, 2016, pp. 597–613.
[48]
Zhu J., Shen Y., Xu Y., Zhao D., Chen Q., Region-based semantic factorization in GANs, in: International conference on machine learning, PMLR, 2022, pp. 27612–27632.
[49]
Zhu J., Shen Y., Xu Y., Zhao D., Chen Q., Zhou B., In-domain GAN inversion for faithful reconstruction and editability, IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).
[50]
Zhu J., Shen Y., Zhao D., Zhou B., In-domain gan inversion for real image editing, in: European conference on computer vision, Springer, 2020, pp. 592–608.
[51]
Zhu J., Zhao D., Zhang B., Zhou B., Disentangled inference for GANs with latently invertible autoencoder, International Journal of Computer Vision 130 (5) (2022) 1259–1276.
Index Terms
- LoopNet for fine-grained fashion attributes editing
Index terms have been assigned to the content through auto-classification.
Recommendations
High-fidelity instructional fashion image editing
AbstractInstructional image editing has received a significant surge of attention recently. In this work, we are interested in the challenging problem of instructional image editing within the particular fashion realm, a domain with significant potential ...
Graphical abstractDisplay Omitted
PFNet: Attribute-aware personalized fashion editing with explainable fashion compatibility analysis
AbstractAttribute-aware editing provides a feasible way for users to participate in fashion design. In a sense, an explainable model of fashion compatibility can assist users to perceive the fashionability of their design. However, previous fashion ...
Comments
Information & Contributors
Information
Published In
Elsevier Ltd.
Publisher
Pergamon Press, Inc.
United States
Publication History
Published: 01 January 2025
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025