Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Generalized fuzzy topology versus non-commutative topology

Published: 01 June 2011 Publication History

Abstract

The paper introduces a modification of the notions of generalized fuzzy topological space of Demirci and quantal space of Mulvey and Pelletier, suitable to explore interrelations between point-set lattice-theoretic topology and non-commutative topology developed in the framework of C^*-algebras or (more recently) of quantales. As a consequence of the new approach, a generalization of the concept of topological system of Vickers arises. Moreover, the currently dominating variable-basis topological setting in the fuzzy community, due to Rodabaugh, appears to be ''fixed-basis''.

References

[1]
Abramsky, S. and Vickers, S., Quantales, observational logic and process semantics. Math. Struct. Comput. Sci. v3. 161-227.
[2]
Adámek, J., Herrlich, H. and Strecker, G.E., Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ. v17. 1-507.
[3]
Aerts, D., Colebunders, E., van der Voorde, A. and van Steirteghem, B., State property systems and closure spaces: a study of categorical equivalence. Int. J. Theor. Phys. v38 i1. 359-385.
[4]
Aerts, D., Colebunders, E., van der Voorde, A. and van Steirteghem, B., On the amnestic modification of the category of state property systems. Appl. Categ. Struct. v10 i5. 469-480.
[5]
Akemann, C.A., Left ideal structure of C*-algebras. J. Funct. Anal. v6. 305-317.
[6]
Barr, M., *-Autonomous Categories. With an Appendix by Po-Hsiang Chu. 1979. Springer-Verlag.
[7]
Bayoumi, F. and Rodabaugh, S.E., Overview and comparison of localic and fixed-basis topological products. Fuzzy Sets Syst. v161 i18. 2397-2439.
[8]
Birkhoff, G., On the structure of abstract algebras. Proc. Cambridge Philos. Soc. v31. 433-454.
[9]
Borceux, F. and van den Bossche, G., An essay on noncommutative topology. Topology Appl. v31 i3. 203-223.
[10]
Chang, C.L., Fuzzy topological spaces. J. Math. Anal. Appl. v24. 182-190.
[11]
Cohn, P.M., Universal Algebra. 1981. D. Reidel Publishing Company.
[12]
Coniglio, M.E. and Miraglia, F., Non-commutative topology and quantales. Stud. Log. v65 i2. 223-236.
[13]
Demirci, M., Pointed semi-quantales and generalized lattice-valued quasi topological spaces. In: Klement, E.P., Rodabaugh, S.E., Stout, L.N. (Eds.), Abstracts of the 29th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[14]
Demirci, M., Pointed semi-quantales and lattice-valued topological spaces. Fuzzy Sets Syst. v161 i9. 1224-1241.
[15]
J.T. Denniston, A. Melton, S.E. Rodabaugh, Interweaving algebra and topology: lattice-valued topological systems, submitted for publication.
[16]
Denniston, J.T., Melton, A. and Rodabaugh, S.E., Lattice-valued topological systems. In: Bodenhofer, U., De Baets, B., Klement, E.P., Saminger-Platz, S. (Eds.), Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[17]
Denniston, J.T., Melton, A. and Rodabaugh, S.E., Lattice-valued predicate transformers and interchange systems. In: Cintula, P., Klement, E.P., Stout, L.N. (Eds.), Abstracts of the 31st Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[18]
Denniston, J.T. and Rodabaugh, S.E., Functorial relationships between lattice-valued topology and topological systems. Quaest. Math. v32 i2. 139-186.
[19]
Dixmier, J., C*-algebras. 1983. North-Holland Mathematical Library, 1983.North-Holland.
[20]
Eklund, P., Category theoretic properties of fuzzy topological spaces. Fuzzy Sets Syst. v13. 303-310.
[21]
Eklund, P., A comparison of lattice-theoretic approaches to fuzzy topology. Fuzzy Sets Syst. v19. 81-87.
[22]
P. Eklund, Categorical fuzzy topology, Ph.D. Thesis, Åbo Akademi, 1986.
[23]
A. Frascella, C. Guido, S. Solovyov, Algebraically-topological systems and attachment, submitted for publication.
[24]
A. Frascella, C. Guido, S. Solovyov, Dual attachment pairs in categorically-algebraic topology, submitted for publication.
[25]
Gähler, W., Monadic topology---a new concept of generalized topology. In: Gähler, W. (Ed.), Recent Developments of General Topology and its Applications, International Conference in Memory of Felix Hausdorff (1868--1942), Mathematical Research, vol. 67. Akademie-Verlag, Berlin. pp. 136-149.
[26]
Gelfand, I. and Neumark, M., On the embedding of normed rings into the ring of operators in Hilbert space. Mat. USSR-Sb. v12. 197-213.
[27]
Gierz, G. and Hofmann, K., Continuous Lattices and Domains. 2003. Cambridge University Press.
[28]
Giles, R. and Kummer, H., A non-commutative generalization of topology. Indiana Univ. Math. J. v21. 91-102.
[29]
Goguen, J.A., L-fuzzy sets. J. Math. Anal. Appl. v18. 145-174.
[30]
Goguen, J.A., The fuzzy Tychonoff theorem. J. Math. Anal. Appl. v43. 734-742.
[31]
Guido, C., Powerset operators based approach to fuzzy topologies on fuzzy sets. In: Rodabaugh, S.E., Klement, E.P. (Eds.), Topological and Algebraic Structures in Fuzzy Sets. A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic---Studia Logica Library, vol. 20. Kluwer Academic Publishers. pp. 401-413.
[32]
Guido, C., Attachment between fuzzy points and fuzzy sets. In: Bodenhofer, U., De Baets, B., Klement, E.P., Saminger-Platz, S. (Eds.), Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[33]
Guido, C., Fuzzy points and attachment. Fuzzy Sets Syst. v161 i16. 2150-2165.
[34]
Herrlich, H. and Strecker, G.E., Category theory. In: Sigma Series in Pure Mathematics, vol. 1, third ed. Heldermann Verlag.
[35]
Höhle, U., Many Valued Topology and its Applications. 2001. Kluwer Academic Publishers, Boston.
[36]
Höhle, U., A note on the hypergraph functor. Fuzzy Sets Syst. v131 i3. 353-356.
[37]
Höhle, U., Fuzzy sets and sheaves. Part I: basic concepts. Fuzzy Sets Syst. v158 i11. 1143-1174.
[38]
Fuzzy sets and sheaves. Part II: sheaf-theoretic foundations of fuzzy set theory with applications to algebra and topology. Fuzzy Sets Syst. v158 i11. 1175-1212.
[39]
Höhle, U. and Šostak, A.P., Axiomatic foundations of fixed-basis fuzzy topology. In: Höhle, U., Rodabaugh, S.E. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3. Kluwer Academic Publishers. pp. 123-272.
[40]
Hutton, B., Products of fuzzy topological spaces. Topology Appl. v11. 59-67.
[41]
Isbell, J.R., Atomless parts of spaces. Math. Scand. v31. 5-32.
[42]
Johnstone, P.T., Stone Spaces. 1982. Cambridge University Press.
[43]
R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I: Elementary Theory, Graduate Studies in Mathematics, vol. 15, second ed., American Mathematical Society, Providence, RI, 1997.
[44]
R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II: Advanced theory, Graduate Studies in Mathematics, vol. 16, second ed., American Mathematical Society, Providence, RI, 1997.
[45]
Kelly, J.C., Bitopological spaces. Proc. London Math. Soc. v13 iIII. 71-89.
[46]
Fuzzy topologies of Scott continuous functions and their relation to the hypergraph functor. Quaest. Math. v15 i2. 175-187.
[47]
Kruml, D., Spatial quantales. Appl. Categ. Struct. v10 i1. 49-62.
[48]
Kruml, D. and Paseka, J., Algebraic and categorical aspects of quantales. In: Hazewinkel, M. (Ed.), Handbook of Algebra, vol. 5. Elsevier. pp. 323-362.
[49]
T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz University, Poznań, Poland, 1985.
[50]
Kubiak, T., On L-Tychonoff spaces. Fuzzy Sets Syst. v73 i1. 25-53.
[51]
F.E.J. Linton, Some aspects of equational categories, in: Proceedings of the Conference on Categorical Algebra, La Jolla 1965, pp. 84--94.
[52]
Lowen, R., Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. v56. 621-633.
[53]
Mac Lane, S., Categories for the Working Mathematician. 1998. second ed. Springer-Verlag.
[54]
Manes, E.G., Algebraic Theories. 1976. Springer-Verlag.
[55]
C. Mulvey, Rend. Circ. Mat. Palermo II (12) (1986) 99--104.
[56]
Mulvey, C.J. and Pelletier, J.W., On the quantisation of points. J. Pure Appl. Algebra. v159. 231-295.
[57]
Mulvey, C.J. and Pelletier, J.W., On the quantisation of spaces. J. Pure Appl. Algebra. v175 i1--3. 289-325.
[58]
Nakajima, N., Generalized fuzzy sets. Fuzzy Sets Syst. v32 i3. 307-314.
[59]
Papert, D. and Papert, S., Sur les treillis des ouverts et les paratopologies. Semin. de Topologie et de Geometrie differentielle Ch. Ehresmann. v1 i1. 1-9.
[60]
J. Paseka, Quantale modules, Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University Brno, 1999.
[61]
Pultr, A., Frames. In: Hazewinkel, M. (Ed.), Handbook of Algebra, vol. 3. North-Holland, Elsevier. pp. 789-858.
[62]
Pultr, A. and Rodabaugh, S.E., Category theoretic aspects of chain-valued frames: part I: categorical foundations. Fuzzy Sets Syst. v159. 501-528.
[63]
Pultr, A. and Rodabaugh, S.E., Category theoretic aspects of chain-valued frames: part II: applications to lattice-valued topology. Fuzzy Sets Syst. v159. 529-558.
[64]
Resende, P., Quantales, finite observations and strong bisimulation. Theor. Comput. Sci. v254 i1--2. 95-149.
[65]
Resende, P., Topological systems are points of quantales. J. Pure Appl. Algebra. v173 i1. 87-120.
[66]
Rodabaugh, S.E., A categorical accommodation of various notions of fuzzy topology. Fuzzy Sets Syst. v9. 241-265.
[67]
Rodabaugh, S.E., Point-set lattice-theoretic topology. Fuzzy Sets Syst. v40 i2. 297-345.
[68]
Rodabaugh, S.E., Categorical frameworks for stone representation theories. In: Rodabaugh, S.E., Klement, E.P., Höhle, U. (Eds.), Applications of Category Theory to Fuzzy Subsets, Theory and Decision Library: Series B: Mathematical and Statistical Methods, vol. 14. Kluwer Academic Publishers. pp. 177-231.
[69]
Rodabaugh, S.E., Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies. Quaest. Math. v20 i3. 463-530.
[70]
Rodabaugh, S.E., Categorical foundations of variable-basis fuzzy topology. In: Höhle, U., Rodabaugh, S.E. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3. Kluwer Academic Publishers, Dordrecht. pp. 273-388.
[71]
Rodabaugh, S.E., Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle, U., Rodabaugh, S.E. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3. Kluwer Academic Publishers, Dordrecht. pp. 91-116.
[72]
Rodabaugh, S.E., Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics. Int. J. Math. Math. Sci. v2007. 1-71.
[73]
Rodabaugh, S.E., Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics. Appl. Gen. Topology. v9 i1. 77-108.
[74]
Rodabaugh, S.E., Relationship of algebraic theories to powersets over objects in Set and Set×C. Fuzzy Sets Syst. v161 i3. 453-470.
[75]
Rosenthal, K.I., Quantales and their Applications. 1990. Pitman Research Notes in Mathematics, 1990.Addison Wesley Longman.
[76]
Rosický, J., Equational categories. Cah. Topol. Géom. Différ. v22. 85-95.
[77]
Sakai, S., C*-Algebras and W*-Algebras. 1998. Springer, Berlin.
[78]
Solovjovs, S., Embedding topology into algebra. In: Bodenhofer, U., De Baets, B., Klement, E.P., Saminger-Platz, S. (Eds.), Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[79]
Solovjovs, S., Fuzzy algebras as a framework for fuzzy topology. In: Abstracts of the 77th Workshop on General Algebra, Institute of Mathematics, University of Potsdam, Potsdam.
[80]
S. Solovjovs, Limits and colimits of variable-basis topological systems, in: Abstracts of Applications of Algebra XIII, Institute of Mathematics and Computer Science of Jan Długosz University, 2009.
[81]
S. Solovjovs, On a coalgebraic category of variety-based topological systems, in: Abstracts of the 4th International Conference on Topology, Algebra and Categories in Logic, Institute for Logic, Language and Computation, Amsterdam, 2009.
[82]
Solovjovs, S., Categorically-algebraic topology. In: Abstracts of the International Conference on Algebras and Lattices (Jardafest), Charles University, Prague.
[83]
Solovjovs, S., Powerset operator foundations for categorically-algebraic fuzzy sets theories. In: Cintula, P., Klement, E.P., Stout, L.N. (Eds.), Abstracts of the 31st Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz.
[84]
S. Solovyov, Categorical foundations of variety-based topology and topological systems, submitted for publication.
[85]
S. Solovyov, Powerset operator foundations for catalog fuzzy set theories, Iran. J. Fuzzy Syst., to appear.
[86]
Solovyov, S., Categorical frameworks for variable-basis sobriety and spatiality. Math. Stud. (Tartu). v4. 89-103.
[87]
Solovyov, S., On the category Q-Mod. Algebra Univers. v58. 35-58.
[88]
Solovyov, S., Sobriety and spatiality in varieties of algebras. Fuzzy Sets Syst. v159 i19. 2567-2585.
[89]
Solovyov, S., From quantale algebroids to topological spaces: fixed- and variable-basis approaches. Fuzzy Sets Syst. v161 i9. 1270-1287.
[90]
Solovyov, S., Hypergraph functor and attachment. Fuzzy Sets Syst. v161 i22. 2945-2961.
[91]
Solovyov, S., Variable-basis topological systems versus variable-basis topological spaces. Soft Comput. v14 i10. 1059-1068.
[92]
Stone, M.H., The theory of representations for Boolean algebras. Trans. Am. Math. Soc. v40. 37-111.
[93]
Stone, M.H., Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. v41. 375-481.
[94]
Stone, M.H., Topological representations of distributive lattices and Brouwerian logics. Cas. Mat. Fys. v67. 1-25.
[95]
Vickers, S., Topology via Logic. 1989. Cambridge University Press.
[96]
von Neumann, J., Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann. v102. 370-427.
[97]
Šostak, A., Fuzzy categories related to algebra and topology. Tatra Mt. Math. Publ. v16 i1. 159-185.
[98]
Šostak, A.P., On a fuzzy topological structure. Rend. Circ. Mat. Palermo II. Ser. Suppl. v11. 89-103.
[99]
Zadeh, L.A., Fuzzy sets. Inf. Control. v8. 338-365.

Cited By

View all
  1. Generalized fuzzy topology versus non-commutative topology

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Fuzzy Sets and Systems
    Fuzzy Sets and Systems  Volume 173, Issue 1
    June, 2011
    115 pages

    Publisher

    Elsevier North-Holland, Inc.

    United States

    Publication History

    Published: 01 June 2011

    Author Tags

    1. Algebra
    2. Algebral space
    3. C*-algebra
    4. Categorically algebraic topology
    5. Coreflective subcategory
    6. Non-commutative topology
    7. Powerset operator
    8. Quantal space
    9. Semi-quantale
    10. Topological system
    11. Variety

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media