Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Construction of fuzzy automata from fuzzy regular expressions

Published: 01 July 2012 Publication History

Abstract

Li and Pedrycz have proved fundamental results that provide different equivalent ways to represent fuzzy languages with membership values in a lattice-ordered monoid, and generalize the well-known results of the classical theory of formal languages. In particular, they have shown that a fuzzy language over an integral lattice-ordered monoid can be represented by a fuzzy regular expression if and only if it can be recognized by a fuzzy finite automaton. However, they did not give any efficient method for constructing an equivalent fuzzy finite automaton from a given fuzzy regular expression. In this paper we provide such an efficient method. Transforming scalars appearing in a fuzzy regular expression @ainto letters of the new extended alphabet, we convert the fuzzy regular expression @ato an ordinary regular expression @a"R. Then, starting from an arbitrary nondeterministic finite automaton A that recognizes the language @?@a"R@? represented by the regular expression @a"R, we construct fuzzy finite automata A"@a and A"@a^r with the same or even less number of states than the automaton A, which recognize the fuzzy language @?@a@?represented by the fuzzy regular expression @a. The starting nondeterministic finite automaton A can be obtained from @a"R using any of the well-known constructions for converting regular expressions to nondeterministic finite automata, such as Glushkov-McNaughton-Yamada's position automaton, Brzozowski's derivative automaton, Antimirov's partial derivative automaton, or Ilie-Yu's follow automaton.

References

[1]
Antimirov, V., Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. v155. 291-319.
[2]
Basak, N.C. and Gupta, A., On quotient machines of a fuzzy automaton and the minimal machine. Fuzzy Sets Syst. v125. 223-229.
[3]
Bělohlávek, R., Determinism and fuzzy automata. Inf. Sci. v143. 205-209.
[4]
Bělohlávek, R., Fuzzy Relational Systems: Foundations and Principles. 2002. Kluwer, New York.
[5]
Bělohlávek, R. and Vychodil, V., Fuzzy Equational Logic. 2005. Springer, Berlin, Heidelberg.
[6]
Brzozowsky, J., Derivatives of regular expressions. J. ACM. v11. 481-494.
[7]
Calude, C.S., Calude, E. and Khoussainov, B., Finite nondeterministic automata: simulation and minimality. Theor. Comput. Sci. v242. 219-235.
[8]
Câmpeanu, C., Sântean, N. and Yu, S., Mergible states in large NFA. Theor. Comput. Sci. v330. 23-34.
[9]
Champarnaud, J.-M. and Coulon, F., NFA reduction algorithms by means of regular inequalities. In: Ésik, Z., Fülöp, Z. (Eds.), DLT 2003, Lecture Notes in Computer Science, vol. 2710. pp. 194-205.
[10]
Champarnaud, J.-M. and Coulon, F., NFA reduction algorithms by means of regular inequalities. Theor. Comput. Sci. v327. 241-253.
[11]
Champarnaud, J.-M. and Ziadi, D., New finite automaton constructions based on canonical derivatives. In: Yu, S., Paun, A. (Eds.), CIAA 2000, Lecture Notes in Computer Science, vol. 2088. Springer, Berlin. pp. 94-104.
[12]
Champarnaud, J.-M. and Ziadi, D., Computing the equation automaton of a regular expression in O(s2) space and time. In: Amir, A., Landau, G. (Eds.), CPM 2001, Lecture Notes in Computer Science, vol. 2089. Springer, Berlin. pp. 157-168.
[13]
Champarnaud, J.-M. and Ziadi, D., Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci. v289. 137-163.
[14]
Cheng, W. and Mo, Z., Minimization algorithm of fuzzy finite automata. Fuzzy Sets Syst. v141. 439-448.
[15]
Ćiri¿, M., Droste, M., Ignjatovi¿, J. and Vogler, H., Determinization of weighted finite automata over strong bimonoids. Inf. Sci. v180. 3497-3520.
[16]
M. Ćiri¿, J. Ignjatovic, M. Baši¿, I. Janči¿, Nondeterministic automata: simulation, bisimulation and structural equivalence, Comput. Math. Appl., submitted for publication.
[17]
Ćiri¿, M., Ignjatovi¿, J. and Bogdanovi¿, S., Fuzzy equivalence relations and their equivalence classes. Fuzzy Sets Syst. v158. 1295-1313.
[18]
Ćiri¿, M., Ignjatovi¿, J., Damljanovi¿, N. and Baši¿, M., Bisimulations for fuzzy automata. Fuzzy Sets Syst. v186. 100-139.
[19]
M. Ćiri¿, J. Ignjatovi¿, I. Janči¿, N. Damljanovi¿, Algorithms for computing the greatest simulations and bisimulations between fuzzy automata, Fuzzy Sets Syst., submitted for publication.
[20]
Ćiri¿, M., Stamenkovi¿, A., Ignjatovi¿, J. and Petkovi¿, T., Factorization of fuzzy automata. In: Csuhaj-Varju, E., Ésik, Z. (Eds.), FCT 2007, Lecture Notes in Computer Science, vol. 4639. pp. 213-225.
[21]
Ćiri¿, M., Stamenkovi¿, A., Ignjatovi¿, J. and Petkovi¿, T., Fuzzy relation equations and reduction of fuzzy automata. J. Comput. Syst. Sci. v76. 609-633.
[22]
De Baets, B. and De Meyer, H., On the existence and construction of T-transitive closures. Inf. Sci. v152. 167-179.
[23]
Droste, M., Stüber, T. and Vogler, H., Weighted finite automata over strong bimonoids. Inf. Sci. v180. 156-166.
[24]
Droste, M. and Vogler, H., Kleene and Büchi results for weighted automata and multi-valued logics over arbitrary bounded lattices. In: Gao, Y. (Ed.), DLT 2010, Lecture Notes in Computer Science, vol. 6224. pp. 160-172.
[25]
Dubois, D. and Prade, H., Fuzzy Sets Syst.: Theory and Applications. 1980. Academic Press, New York.
[26]
Eilenberg, S., . 1974. Automata, Languages and Machines, 1974.Academic Press, New York.
[27]
Glushkov, V.M., The abstract theory of automata. Russ. Math. Surv. v16. 1-53.
[28]
Gupta, M.M., Saridis, G.N. and Gaines, B.R., Fuzzy Automata and Decision Processes. 1977. North-Holland, New York.
[29]
Haines, L.H., On free monoids partially ordered by embedding. J. Combin. Theory. v6. 94-98.
[30]
Higman, G., Ordering with divisibility in abstract algebras. Proc. London Math. Soc. v3. 326-336.
[31]
Ignjatovi¿, J. and Ćiri¿, M., Formal power series and regular operations on fuzzy languages. Inf. Sci. v180. 1104-1120.
[32]
Ignjatovi¿, J., Ćiri¿, M. and Bogdanovi¿, S., Determinization of fuzzy automata with membership values in complete residuated lattices. Inf. Sci. v178. 164-180.
[33]
Ignjatovi¿, J., Ćiri¿, M. and Bogdanovi¿, S., Fuzzy homomorphisms of algebras. Fuzzy Sets Syst. v160. 2345-2365.
[34]
Ignjatovi¿, J., Ćiri¿, M., Bogdanovi¿, S. and Petkovi¿, T., Myhill-Nerode type theory for fuzzy languages and automata. Fuzzy Sets Syst. v161. 1288-1324.
[35]
Ilie, L. and Yu, S., Constructing NFAs by optimal use of positions in regular expressions. In: Apostolico, A., Takeda, M. (Eds.), CPM 2002, Lecture Notes in Computer Science, vol. 2373. Springer, Berlin. pp. 279-288.
[36]
Ilie, L. and Yu, S., Algorithms for computing small NFAs. In: Diks, K. (Ed.), MFCS 2002, Lecture Notes in Computer Science, vol. 2420. pp. 328-340.
[37]
Ilie, L. and Yu, S., Follow automata. Inf. Comput. v186. 140-162.
[38]
Ilie, L. and Yu, S., Reducing NFAs by invariant equivalences. Theor. Comput. Sci. v306. 373-390.
[39]
Ilie, L., Navarro, G. and Yu, S., On NFA reductions. In: Karhumäki, J. (Ed.), Theory is Forever, Lecture Notes in Computer Science, vol. 3113. pp. 112-124.
[40]
Ilie, L., Solis-Oba, R. and Yu, S., Reducing the size of NFAs by using equivalences and preorders. In: Apostolico, A., Crochemore, M., Park, K. (Eds.), CPM 2005, Lecture Notes in Computer Science, vol. 3537. pp. 310-321.
[41]
Janči¿, Z., Ignjatovi¿, J. and Ćiri¿, M., An improved algorithm for determinization of weighted and fuzzy automata. Inf. Sci. v181. 1358-1368.
[42]
Konstantinidis, S., Santean, N. and Yu, S., Fuzzification of rational and recognizable sets. Fund. Inf. v76. 413-447.
[43]
Kupferman, O. and Lustig, Y., Lattice automata. In: Proceedings of VWCAI2007, Lecture Notes in Computer Science, vol. 4349. pp. 199-213.
[44]
Kuske, D., Schützenberger's theorem on formal power series follows from Kleene's theorem. Theor. Comput. Sci. v401. 243-248.
[45]
Lee, E.T. and Zadeh, L.A., Note on fuzzy languages. Inf. Sci. v1. 421-434.
[46]
Lei, H. and Li, Y.M., Minimization of states in automata theory based on finite lattice-ordered monoids. Inf. Sci. v177. 1413-1421.
[47]
Li, P. and Li, Y.M., Algebraic properties of LA-languages. Inf. Sci. v176. 3232-3255.
[48]
Y. M. Li, Lattice valued finite automata and their languages, in: 8th World Multiconference on Systemics, Cybernetics and Informatics: SCI2004, Orlando, USA, 2004, pp. 18--21.
[49]
Li, Y.M., Finite automata theory with membership values in lattices. Inf. Sci. v181. 1003-1017.
[50]
Li, Y.M. and Pedrycz, W., Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids. Fuzzy Sets Syst. v156. 68-92.
[51]
Li, Y.M. and Pedrycz, W., Minimization of lattice finite automata and its application to the decomposition of lattice languages. Fuzzy Sets Syst. v158. 1423-1436.
[52]
Li, Z., Li, P. and Li, Y.M., The relationships among several types of fuzzy automata. Inf. Sci. v176. 2208-2226.
[53]
Malik, D.S., Mordeson, J.N. and Sen, M.K., Minimization of fuzzy finite automata. Inf. Sci. v113. 323-330.
[54]
Mordeson, J.N. and Malik, D.S., Fuzzy Automata and Languages: Theory and Applications. 2002. Chapman & Hall, CRC, Boca Raton, London.
[55]
McNaughton, R. and Yamada, H., Regular expressions and state graphs for automata. IEEE Trans. Electron. Comput. v9 i1. 39-47.
[56]
Peeva, K., Finite L-fuzzy acceptors, regular L-fuzzy grammars and syntactic pattern recognition. Int. J. Uncertainty Fuzziness Knowledge Based Syst. v12. 89-104.
[57]
Peeva, K., Finite L-fuzzy machines. Fuzzy Sets Syst. v141. 415-437.
[58]
Peeva, K. and Kyosev, Y., Fuzzy Relational Calculus: Theory, Applications, and Software (with CD-ROM). In: Advances in Fuzzy Systems---Applications and Theory, vol. 22. World Scientific.
[59]
Peeva, K. and Zahariev, Z., Computing behavior of finite fuzzy machines---algorithm and its application to reduction and minimization. Inf. Sci. v178. 4152-4165.
[60]
Petkovi¿, T., Congruences and homomorphisms of fuzzy automata. Fuzzy Sets Syst. v157. 444-458.
[61]
Qiu, D.W., Automata theory based on completed residuated lattice-valued logic (I). Sci. China Ser. F. v44 i6. 419-429.
[62]
Qiu, D.W., Automata theory based on completed residuated lattice-valued logic (II). Sci. China Ser. F. v45 i6. 442-452.
[63]
Qiu, D.W., Characterizations of fuzzy finite automata. Fuzzy Sets Syst. v141. 391-414.
[64]
Qiu, D.W., Pumping lemma in automata theory based on complete residuated lattice-valued logic: a note. Fuzzy Sets Syst. v157. 2128-2138.
[65]
Schützenberger, M.P., On the definition of a family of automata. Inf. Control. v4. 245-270.
[66]
Santos, E.S., Maximin automata. Inf. Control. v12. 367-377.
[67]
Santos, E.S., On reduction of max--min machines. J. Math. Anal. Appl. v37. 677-686.
[68]
Santos, E.S., Fuzzy automata and languages. Inf. Sci. v10. 193-197.
[69]
Sheng, L. and Li, Y.M., Regular grammars with truth values in lattice-ordered monoid and their languages. Soft Comput. v10. 79-86.
[70]
A. Stamenkovi¿, M. Ćiri¿, J. Ignjatovi¿, Reduction of fuzzy automata by means of fuzzy quasi-orders, Inf. Sci., submitted for publication.
[71]
Thompson, K., Regular expression search algorithm. Commun. ACM. v11 i6. 419-422.
[72]
Wechler, W., The Concept of Fuzziness in Automata and Language Theory. 1978. Akademie-Verlag, Berlin.
[73]
W.G. Wee, On Generalizations of Adaptive Algorithm and Application of the Fuzzy Sets Concept to Pattern Classification, Ph.D. Thesis, Purdue University, June 1967.
[74]
Wee, W.G. and Fu, K.S., A formulation of fuzzy automata and its application as a model of learning systems. IEEE Trans. Syst. Man Cybern. v5. 215-223.
[75]
Wu, L.H. and Qiu, D.W., Automata theory based on complete residuated lattice-valued logic: reduction and minimization. Fuzzy Sets Syst. v161. 1635-1656.
[76]
Xing, H. and Qiu, D.W., Pumping lemma in context-free grammar theory based on complete residuated lattice-valued logic. Fuzzy Sets Syst. v160. 1141-1151.
[77]
Xing, H. and Qiu, D.W., Automata theory based on complete residuated lattice-valued logic: a categorical approach. Fuzzy Sets Syst. v160. 2416-2428.
[78]
Xing, H., Qiu, D.W. and Liu, F.C., Automata theory based on complete residuated lattice-valued logic: pushdown automata. Fuzzy Sets Syst. v160. 1125-1140.
[79]
Xing, H., Qiu, D.W., Liu, F.C. and Fan, Z.J., Equivalence in automata theory based on complete residuated lattice-valued logic. Fuzzy Sets Syst. v158. 1407-1422.

Cited By

View all
  • (2022)Fuzzy multiset finite automata with outputSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07274-726:24(13205-13217)Online publication date: 1-Dec-2022
  • (2018)Ranks of fuzzy matrices. Applications in state reduction of fuzzy automataFuzzy Sets and Systems10.1016/j.fss.2017.05.028333:C(124-139)Online publication date: 15-Feb-2018
  • (2016)Conversion of fuzzy automata into fuzzy regular expressions using transitive closureJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/IFS-15203830:6(3123-3129)Online publication date: 1-Jan-2016
  • Show More Cited By

Index Terms

  1. Construction of fuzzy automata from fuzzy regular expressions
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Fuzzy Sets and Systems
        Fuzzy Sets and Systems  Volume 199, Issue
        July, 2012
        136 pages

        Publisher

        Elsevier North-Holland, Inc.

        United States

        Publication History

        Published: 01 July 2012

        Author Tags

        1. Fuzzy automata
        2. Fuzzy regular expressions
        3. Lattice-ordered monoids
        4. Nondeterministic automata
        5. Position automata
        6. Regular expressions
        7. Right invariant equivalences
        8. State reduction

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 30 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2022)Fuzzy multiset finite automata with outputSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07274-726:24(13205-13217)Online publication date: 1-Dec-2022
        • (2018)Ranks of fuzzy matrices. Applications in state reduction of fuzzy automataFuzzy Sets and Systems10.1016/j.fss.2017.05.028333:C(124-139)Online publication date: 15-Feb-2018
        • (2016)Conversion of fuzzy automata into fuzzy regular expressions using transitive closureJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/IFS-15203830:6(3123-3129)Online publication date: 1-Jan-2016
        • (2015)Pseudovarieties of algebras with fuzzy equalitiesFuzzy Sets and Systems10.1016/j.fss.2014.07.014260:C(110-120)Online publication date: 1-Feb-2015
        • (2015)A comment on "Construction of fuzzy automata from fuzzy regular expressions"Fuzzy Sets and Systems10.1016/j.fss.2014.06.001262:C(102-110)Online publication date: 1-Mar-2015
        • (2012)Computation of the greatest simulations and bisimulations between fuzzy automataFuzzy Sets and Systems10.1016/j.fss.2012.05.006208(22-42)Online publication date: 1-Dec-2012

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media