Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Lattice-valued bornological systems

Published: 15 January 2015 Publication History

Abstract

Motivated by the concept of lattice-valued topological system of J.T. Denniston, A. Melton, and S.E. Rodabaugh, which extends lattice-valued topological spaces, this paper introduces the notion of lattice-valued bornological system as a generalization of lattice-valued bornological spaces of M. Abel and A. Šostak. We aim at (and make the first steps towards) the theory, which will provide a common setting for both lattice-valued point-set and point-free bornology. In particular, we show the algebraic structure of the latter.

References

[1]
M. Abel, A. Šostak, Towards the theory of L-bornological spaces, Iran. J. Fuzzy Syst., 8 (2011) 19-28.
[2]
J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories: The Joy of Cats, Dover Publications, Mineola, New York, 2009.
[3]
J. Almeida, L. Barreira, Hausdorff dimension in convex bornological spaces, J. Math. Anal. Appl., 268 (2002) 590-601.
[4]
J.W. Baish, R.K. Jain, Fractals and cancer, Cancer Res., 60 (2000) 3683-3688.
[5]
G. Birkhoff, Lattice Theory, American Mathematical Society, 1979.
[6]
J.T. Denniston, A. Melton, S.E. Rodabaugh, Lattice-valued topological systems, in: Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz, 2009, pp. 24-31.
[7]
J.T. Denniston, A. Melton, S.E. Rodabaugh, Enriched topological systems and variable-basis enriched functors, in: Abstracts of the 33rd Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz, 2012, pp. 16-20.
[8]
J.T. Denniston, A. Melton, S.E. Rodabaugh, S. Solovjovs, Lattice-valued preordered sets as lattice-valued topological systems, in: Abstracts of the 34th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz, 2013, pp. 28-34.
[9]
G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
[10]
G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
[11]
C. Guido, Fuzzy points and attachment, Fuzzy Sets Syst., 161 (2010) 2150-2165.
[12]
C. Guido, V. Scarciglia, L-topological spaces as spaces of points, Fuzzy Sets Syst., 173 (2011) 45-59.
[13]
P. Hermann, M. Stehlík, Random Sierpinski carpet approach to mammary cancer, Johannes Kepler Universität, Linz, Austria, 2013.
[14]
H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland Publishing Company, 1977.
[15]
U. Höhle, A.P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publishers, 1999, pp. 123-272.
[16]
J.R. Isbell, Atomless parts of spaces, Math. Scand., 31 (1972) 5-32.
[17]
P.T. Johnstone, Stone Spaces, Cambridge University Press, 1982.
[18]
Y.-M. Liu, M.-K. Luo, Fuzzy Topology, World Scientific Publishing Co., 1997.
[19]
T. Mattfeldt, Classification of binary spatial textures using stochastic geometry, nonlinear deterministic analysis and artificial neural networks, Int. J. Pattern Recognit. Artif. Intell., 17 (2003) 275-300.
[20]
T. Mrkvička, T. Mattfeldt, Testing histological images of mammary tissues on compatibility with the Boolean model of random sets, Image Anal. Stereol., 30 (2011) 11-18.
[21]
D. Papert, S. Papert, Sur les treillis des ouverts et les paratopologies, in: Semin. de Topologie et de Geometrie Differentielle, Ch. Ehresmann 1 (1957/58), vol. 1, 1959, pp. 1-9.
[22]
S.E. Rodabaugh, Categorical frameworks for stone representation theories, in: Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, 1992, pp. 177-231.
[23]
S.E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, in: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publishers, 1999, pp. 273-388.
[24]
S.E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, in: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publishers, 1999, pp. 91-116.
[25]
S.E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics, Int. J. Math. Math. Sci., 2007 (2007) 1-71.
[26]
K.I. Rosenthal, Quantales and Their Applications, Addison Wesley Longman, 1990.
[27]
S. Solovjovs, M. Stehlík, On the category of lattice-valued bornological vector spaces, in: Abstracts of Applications of Algebra XVIII, Institute of Mathematics and Computer Science of Jan Długosz University, Cze'stochowa, 2014, pp. 41-42.
[28]
S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, Soft Comput., 14 (2010) 1059-1068.
[29]
S. Solovyov, Localification of variable-basis topological systems, Quaest. Math., 34 (2011) 11-33.
[30]
S. Solovyov, On a generalization of the concept of state property system, Soft Comput., 15 (2011) 2467-2478.
[31]
S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy Sets Syst., 192 (2012) 176-200.
[32]
S. Solovyov, Lattice-valued topological systems as a framework for lattice-valued formal concept analysis, J. Math., 2013 (2013).
[33]
M. Stehlík, T. Mrkvička, J. Filus, L. Filus, Recent developments on testing in cancer risk: a fractal and stochastic geometry, J. Rel. Stat. Stud., 5 (2012) 83-95.
[34]
S. Vickers, Topology via Logic, Cambridge University Press, 1989.

Cited By

View all
  • (2022)Fuzzifying bornological linear spacesJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-21164442:3(2347-2358)Online publication date: 1-Jan-2022
  • (2021)Induced L-bornological vector spaces and L-Mackey convergence1 Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-20159940:1(1277-1285)Online publication date: 1-Jan-2021
  • (2016)Topological systems as a framework for institutionsFuzzy Sets and Systems10.1016/j.fss.2015.08.009298:C(91-108)Online publication date: 1-Sep-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Fuzzy Sets and Systems
Fuzzy Sets and Systems  Volume 259, Issue C
January 2015
128 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 15 January 2015

Author Tags

  1. (Lattice-valued) bornological space
  2. (Lattice-valued) topological system
  3. Adjoint functor
  4. Locale
  5. Localification and spatialization of topological systems
  6. Point-free topology
  7. Reflective subcategory

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Fuzzifying bornological linear spacesJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-21164442:3(2347-2358)Online publication date: 1-Jan-2022
  • (2021)Induced L-bornological vector spaces and L-Mackey convergence1 Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-20159940:1(1277-1285)Online publication date: 1-Jan-2021
  • (2016)Topological systems as a framework for institutionsFuzzy Sets and Systems10.1016/j.fss.2015.08.009298:C(91-108)Online publication date: 1-Sep-2016
  • (2016)Categorical foundations of variety-based bornologyFuzzy Sets and Systems10.1016/j.fss.2015.07.011291:C(132-143)Online publication date: 15-May-2016
  • (2016)On a topological universe of L-bornological spacesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-015-1905-020:7(2503-2512)Online publication date: 1-Jul-2016

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media