Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A heterogeneous mobile cloud computing model for hybrid clouds

Published: 01 October 2018 Publication History

Abstract

Mobile cloud computing is a paradigm that delivers applications to mobile devices by using cloud computing. In this way, mobile cloud computing allows for a rich user experience; since client applications run remotely in the cloud infrastructure, applications use fewer resources in the user’s mobile devices. In this paper, we present a new mobile cloud computing model, in which platforms of volunteer devices provide part of the resources of the cloud, inspired by both volunteer computing and mobile edge computing paradigms. These platforms may be hierarchical, based on the capabilities of the volunteer devices and the requirements of the services provided by the clouds. We also describe the orchestration between the volunteer platform and the public, private or hybrid clouds. As we show, this new model can be an inexpensive solution to different application scenarios, highlighting its benefits in cost savings, elasticity, scalability, load balancing, and efficiency. Moreover, with the evaluation performed we also show that our proposed model is a feasible solution for cloud services that have a large number of mobile users.

Highlights

Model in which platforms of volunteer devices provide part of the resources.
Benefits in cost savings, elasticity, scalability, load balancing, and efficiency.
Simulation-based evaluation.

References

[1]
Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A., Stoica I., Zaharia M., A view of cloud computing, Commun. ACM 53 (4) (2010) 50–58,.
[2]
Dinh H.T., Lee C., Niyato D., Wang P., A survey of mobile cloud computing: architecture, applications, and approaches, Wirel. Commun. Mob. Comput. 13 (18) (2013) 1587–1611,.
[3]
Hu Y.C., Patel M., Sabella D., Sprecher N., Young V., Mobile edge computing—A key technology towards 5G, ETSI White Paper 11 (2015).
[4]
Tran T.X., Hajisami A., Pandey P., Pompili D., Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges, IEEE Commun. Mag. 55 (4) (2017) 54–61,.
[5]
Gilbert S., Lynch N., Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services, SIGACT News 33 (2) (2002) 51–59,.
[6]
G. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, J. Root, Tactical cloudlets: moving cloud computing to the edge, in: 2014 IEEE Military Communications Conference, 2014, pp. 1440–1446. https://doi.org/10.1109/MILCOM.2014.238.
[7]
Duro F.R., Blas J.G., Higuero D., Perez O., Carretero J., CoSMiC: A hierarchical cloudlet-based storage architecture for mobile clouds, Simul. Model. Pract. Theory 50 (2015) 3–19. Special Issue on Resource Management in Mobile Clouds. https://doi.org/10.1016/j.simpat.2014.07.007.
[8]
I. Stojmenovic, S. Wen, The Fog computing paradigm: Scenarios and security issues, in: 2014 Federated Conference on Computer Science and Information Systems, 2014, pp. 1–8. https://doi.org/10.15439/2014F503.
[9]
Yi S., Li C., Li Q., A survey of fog computing: Concepts, applications and issues, in: Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata ’15, ACM, New York, NY, USA, 2015, pp. 37–42,.
[10]
Mell P.M., Grance T., SP 800-145. The NIST Definition of Cloud Computing. Tech. Rep., National Institute of Standards & Technology, Gaithersburg, MD, United States, 2011.
[11]
H. Qi, A. Gani, Research on mobile cloud computing: Review, trend and perspectives, in: Digital Information and Communication Technology and It’S Applications (DICTAP), 2012 Second International Conference on, 2012, pp. 195–202. https://doi.org/10.1109/DICTAP.2012.6215350.
[12]
Khan A.u.R., Othman M., Madani S.A., Khan S.U., A survey of mobile cloud computing application models, IEEE Commun. Surv. Tutor. 16 (1) (2014) 393–413,.
[13]
Fernando N., Loke S.W., Rahayu W., Mobile cloud computing: A survey, Future Gener. Comput. Syst. 29 (1) (2013) 84–106. Including Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures. https://doi.org/10.1016/j.future.2012.05.023.
[14]
Marinelli E.E., Hyrax: Cloud Computing on Mobile Devices Using MapReduce, Tech. Rep., DTIC Document, 2009.
[15]
Zachariadis S., Mascolo C., Emmerich W., SATIN: a component model for mobile self organisation, in: On the Move To Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2004, Agia Napa, Cyprus, October 25-29, 2004, Proceedings, Part II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1303–1321,.
[16]
Vaquero L.M., Rodero-Merino L., Finding your way in the fog: Towards a comprehensive definition of fog computing, SIGCOMM Comput. Commun. Rev. 44 (5) (2014) 27–32,.
[17]
H. Gupta, A.V. Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A Toolkit for modeling and simulation of resource management techniques in Internet of Things, edge and fog computing environments, 2016, CoRR abs/1606.02007. URL http://arxiv.org/abs/1606.02007.
[18]
Bonomi F., Milito R., Natarajan P., Zhu J., Fog computing: A platform for Internet of Things and analytics, in: Big Data and Internet of Things: A Roadmap for Smart Environments, vol. 546, Springer International Publishing, Cham, 2014, pp. 169–186,.
[19]
T.H. Luan, L. Gao, Z. Li, Y. Xiang, L. Sun, Fog computing: Focusing on mobile users at the edge, 2015, CoRR abs/1502.01815. URL http://arxiv.org/abs/1502.01815.
[20]
Borcoci E., Fog computing, mobile edge computing, cloudlets - which one?, in: SoftNet 2016 Conference August 21, 2016, Rome, iaria.org, 2017, pp. 1–122. (Chapter 1) URL https://www.iaria.org/conferences2016/filesICSNC16/Softnet2016_Tutorial_Fog-MEC-Cloudlets-E.Borcoci-v1.1.pdf.
[21]
Evans D., The internet of things: how the next evolution of the internet is changing everything, Whitepaper, CISCO Internet Business Solutions Group (IBSG) 1 (2011) 1–11.
[22]
Gubbi J., Buyya R., Marusic S., Palaniswami M., Internet of Things (IoT): A vision, architectural elements, and future directions, Future Gener. Comput. Syst. 29 (7) (2013) 1645–1660. Including Special sections: Cyber-enabled Distributed Computing for Ubiquitous Cloud and Network Services: Cloud Computing and Scientific Applications —Big Data, Scalable Analytics, and Beyond. https://doi.org/10.1016/j.future.2013.01.010.
[23]
T. Verbelen, P. Simoens, F. De Turck, B. Dhoedt, P. of the Third ACM Workshop on Mobile Cloud Computing, A. N. Y. N. U. Services, MCS ’12 (Eds.), Cloudlets: bringing the cloud to the mobile user, 2012.
[24]
Ceselli A., Premoli M., Secci S., Mobile edge cloud network design optimization, IEEE/ACM Trans. Netw. PP (99) (2017) 1–14,.
[25]
Satyanarayanan M., Bahl P., Caceres R., Davies N., The case for vm-based cloudlets in mobile computing, IEEE Pervasive Comput. 8 (4) (2009) 14–23,.
[26]
Ha K., Satyanarayanan M., Openstack++ for Cloudlet Deployment, School of Computer Science Carnegie Mellon University Pittsburgh, 2015.
[27]
A. Ahmed, E. Ahmed, A survey on mobile edge computing, in: 2016 10th International Conference on Intelligent Systems and Control (ISCO), 2016, pp. 1–8. https://doi.org/10.1109/ISCO.2016.7727082.
[28]
T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, W. Heinzelman, Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture, in: 2012 IEEE Symposium on Computers and Communications (ISCC), 2012, pp. 000059–000066. https://doi.org/10.1109/ISCC.2012.6249269.
[29]
Ciobanu R.-I., Negru C., Pop F., Dobre C., Mavromoustakis C.X., Mastorakis G., Drop computing: Ad-hoc dynamic collaborative computing, Future Gener. Comput. Syst. (2017).
[30]
Marin R.-C., Hybrid contextual cloud in ubiquitous platforms comprising of smartphones, Int. J. Intell. Syst. Technol. Appl. 12 (1) (2013) 4–17.
[31]
Zhou B., Dastjerdi A.V., Calheiros R., Srirama S., Buyya R., mCloud: A context-aware offloading framework for heterogeneous mobile cloud, IEEE Trans. Serv. Comput. (2015).
[32]
Assis M.R.M., Bittencourt L.F., Tolosana-Calasanz R., Cloud federation: Characterisation and conceptual model, in: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC ’14, IEEE Computer Society, Washington, DC, USA, 2014, pp. 585–590,.
[33]
Banerjee S., Edge computing in the extreme and its applications, in: Proceedings of the Eighth Wireless of the Students, By the Students, and for the Students Workshop, S3, ACM, New York, NY, USA, 2016, pp. 2–2. http://doi.acm.org/10.1145/2987354.2990474.
[34]
Hindman B., Konwinski A., Zaharia M., Ghodsi A., Joseph A.D., Katz R., Shenker S., Stoica I., Mesos: A platform for fine-grained resource sharing in the data center, in: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11, USENIX Association, Berkeley, CA, USA, 2011, pp. 295–308. http://dl.acm.org/citation.cfm?id=1972457.1972488.
[35]
Burns B., Grant B., Oppenheimer D., Brewer E., Wilkes J., Borg, omega, and kubernetes, Commun. ACM 59 (5) (2016) 50–57,.
[36]
Minnebo W., Van Houdt B., Pull versus push mechanism in large distributed networks: Closed form results, in: Proceedings of the 24th International Teletraffic Congress, ITC ’12, International Teletraffic Congress, 2012, pp. 9:1–9:8. http://dl.acm.org/citation.cfm?id=2414276.2414288.
[37]
A.L. Beberg, V.S. Pande, D.L. Ensign, S. Khaliq, G. Jayachandran, Folding@home: lessons from eight years of volunteer distributed computing, in: 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS, vol. 00, 2009, pp. 1–8. http://dx.doi.org/ieeecomputersociety.org/10.1109/IPDPS.2009.5160922.
[38]
Buyya R., Yeo C.S., Venugopal S., Broberg J., Brandic I., Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616,.
[39]
B. Ismail, E. Mostajeran, M. Bazli Ab Karim, W. Ming Tat, S. Setapa, J.-Y. Luke, H. Ong, Evaluation of docker as edge computing platform, in: 2015 IEEE Conference on Open Systems, ICOS, 2015, pp. 130–135.
[40]
BOINC, BOINC and docker, https://boinc.berkeley.edu/trac/wiki/BoincDocker. (Accessed 02 November 2017), 22:02:19 UCT.
[41]
M. Yannuzzi, R.A. Milito, R. Serral-Gracià, D. Montero, M. Nemirovsky, Key ingredients in an IoT recipe: Fog computing, cloud computing, and more fog computing, in: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, 2014, pp. 325–329.
[42]
Sarmenta L.F.G., Volunteer Computing, (Ph.D. thesis) Massachusetts Institute of Technology, Cambridge, MA, USA, 2001, AAI0803463.
[43]
D.P. Anderson, BOINC: a system for public-resource computing and storage, in: Fifth IEEE/ACM International Workshop on Grid Computing, 2004, pp. 4–10. https://doi.org/10.1109/GRID.2004.14.
[44]
Nakanishi R., A study on utilization of TV sets in Volunteer Computing, in: ITE Tech. Rep., BCT ’16, vol. 40, 2016, pp. 17–20.
[45]
Cushing R., Putra G.H.H., Koulouzis S., Belloum A., Bubak M., de Laat C., Distributed computing on an ensemble of browsers, IEEE Internet Comput. 17 (5) (2013) 54–61,.
[46]
Czarnul P., Kuchta J., Matuszek M., Parallel computations in the Volunteer–Based comcute system, in: Parallel Processing and Applied Mathematics: 10th International Conference, PPAM 2013, Warsaw, Poland, September 8–11, 2013, Revised Selected Papers, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 261–271,.
[47]
Calderón A., García-Carballeira F., Bergua B., Sánchez L.M., Carretero J., Expanding the volunteer computing scenario: A novel approach to use parallel applications on volunteer computing, Future Gener. Comput. Syst. 28 (6) (2012) 881–889. Including Special sections SS: Volunteer Computing and Desktop Grids and SS: Mobile Ubiquitous Computing. https://doi.org/10.1016/j.future.2011.04.004.
[48]
Balicki J., Korłub W., Paluszak J., Big data processing by volunteer computing supported by intelligent agents, in: Pattern Recognition and Machine Intelligence: 6th International Conference, PReMI 2015, Warsaw, Poland, June 30 - July 3, 2015, Proceedings, Springer International Publishing, Cham, 2015, pp. 268–278,.
[49]
Bruno R., Ferreira P., freeCycles: Efficient data distribution for volunteer computing, in: Proceedings of the Fourth International Workshop on Cloud Data and Platforms, CloudDP ’14, ACM, New York, NY, USA, 2014, pp. 4:1–4:6,.
[50]
V.D. Cunsolo, S. Distefano, A. Puliafito, M. Scarpa, Volunteer computing and desktop cloud: The Cloud@Home paradigm, in: 2009 Eighth IEEE International Symposium on Network Computing and Applications, 2009, pp. 134–139. https://doi.org/10.1109/NCA.2009.41.
[51]
Alonso-Monsalve S., García-Carballeira F., Calderón A., Fog computing through public-resource computing and storage, in: The 2nd International Conference on Fog and Mobile Edge Computing, FMEC 2017, IEEE, 2017, pp. 81–87,.
[52]
D.P. Anderson, et al., BOINC, GitHub Repository, https://github.com/BOINC/boinc.
[53]
Cui Y., Lai Z., Dai N., A first look at mobile cloud storage services: architecture, experimentation, and challenges, IEEE Netw. 30 (4) (2016) 16–21,.
[54]
M.J. Dworkin, E.B. Barker, J.R. Nechvatal, J. Foti, L.E. Bassham, E. Roback, J.F. Dray Jr., Advanced Encryption Standard (AES), Federal Inf. Process. Stds.(NIST FIPS)-197, 2001.
[55]
Liu F.-H., Computation over encrypted data, Cloud Comput. Secur.: Found. Challenges (2016) 305.
[56]
D.P. Anderson, J. McLeod, Local scheduling for volunteer computing, in: 2007 IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–8. https://doi.org/10.1109/IPDPS.2007.370667.
[57]
Dierks T., Rescorla E., The transport layer security (TLS) protocol version 1.2, in: IETF RFC 5246, 2008, pp. 1–19.
[58]
Gudgin M., Hadley M., Mendelsohn N., Moreau J.-J., Nielsen H.F., Karmarkar A., Lafon Y., Simple object access protocol (SOAP) 1.2, World Wide Web Consortium (2003).
[59]
A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Web services security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard Specification, 2006.
[60]
S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, N. Bolyard, Elliptic curve cryptography (ECC) cipher suites for transport layer security (TLS), IETF, Internet Engineering Task Force, 2006.
[61]
Krawczyk H., Perfect forward secrecy, Encyclopedia of Cryptography and Security, Springer US, Boston, MA, 2011, pp. 921–922,.
[62]
W.C. Barker, E. Barker, U.D. of Commerce, N.I. of Standards, Technology, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher: NIST Special Publication 800-67, Revision 2, CreateSpace Independent Publishing Platform, USA, 2012.
[63]
Anderson D.P., Volunteer computing: The ultimate cloud, Crossroads 16 (3) (2010) 7–10,.
[65]
SETI@Home, CPU performance, https://setiathome.berkeley.edu/cpu_list.php. (Accessed 12 June 2017), 22:02:19 UCT).
[66]
Javadi B., Kondo D., Vincent J.M., Anderson D.P., Discovering statistical models of availability in large distributed systems: An empirical study of SETI@home, IEEE Trans. Parallel Distrib. Syst. 22 (11) (2011) 1896–1903,.
[67]
Alonso-Monsalve S., García-Carballeira F., Calderón A., ComBos: A complete simulator of volunteer computing and desktop grids, Simul. Model. Pract. Theory 77 (2017) 197–211. https://doi.org/10.1016/j.simpat.2017.06.002.
[68]
Casanova H., Giersch A., Legrand A., Quinson M., Suter F., Versatile, scalable, and accurate simulation of distributed applications and platforms, J. Parallel Distrib. Comput. 74 (10) (2014) 2899–2917. http://hal.inria.fr/hal-01017319.
[69]
B. Ramesh, A. Bhardwaj, J. Richardson, A.D. George, H. Lam, Optimization and evaluation of image- and signal-processing kernels on the TI C6678 multi-core DSP, in: 2014 IEEE High Performance Extreme Computing Conference, HPEC, 2014, pp. 1–6. http://dx.doiorg/.10.1109/HPEC.2014.7040989.
[70]
K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, M. Satyanarayanan, The impact of mobile multimedia applications on data center consolidation, in: 2013 IEEE International Conference on Cloud Engineering, IC2E, 2013, pp. 166–176. https://doi.org/10.1109/IC2E.2013.17.
[71]
Sphinx-4, Sphinx-4: A speech recognizer written entirely in the Java programming language, http://cmusphinx.sourceforge.net/sphinx4/, Online.

Cited By

View all
  • (2023)A scalable simulator for cloud, fog and edge computing platforms with mobility supportFuture Generation Computer Systems10.1016/j.future.2023.02.010144:C(117-130)Online publication date: 1-Jul-2023
  • (2022)New directions in mobile, hybrid, and heterogeneous clouds for cyberinfrastructuresFuture Generation Computer Systems10.1016/j.future.2018.05.07387:C(615-617)Online publication date: 21-Apr-2022
  • (2020)RETRACTED ARTICLE: Energy consumption analysis of Virtual Machine migration in cloud using hybrid swarm optimization (ABC–BA)The Journal of Supercomputing10.1007/s11227-018-2583-376:5(3374-3390)Online publication date: 1-May-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Future Generation Computer Systems
Future Generation Computer Systems  Volume 87, Issue C
Oct 2018
921 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 October 2018

Author Tags

  1. Fog computing
  2. Heterogeneous cloud
  3. Hybrid cloud
  4. Mobile cloud computing
  5. Mobile edge computing
  6. Participating device

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)A scalable simulator for cloud, fog and edge computing platforms with mobility supportFuture Generation Computer Systems10.1016/j.future.2023.02.010144:C(117-130)Online publication date: 1-Jul-2023
  • (2022)New directions in mobile, hybrid, and heterogeneous clouds for cyberinfrastructuresFuture Generation Computer Systems10.1016/j.future.2018.05.07387:C(615-617)Online publication date: 21-Apr-2022
  • (2020)RETRACTED ARTICLE: Energy consumption analysis of Virtual Machine migration in cloud using hybrid swarm optimization (ABC–BA)The Journal of Supercomputing10.1007/s11227-018-2583-376:5(3374-3390)Online publication date: 1-May-2020
  • (2019)RETRACTED ARTICLE: Simulator considering modeling and performance evaluation for high-performance computing of collaborative-based mobile cloud infrastructureThe Journal of Supercomputing10.1007/s11227-019-02882-x75:8(4459-4471)Online publication date: 1-Aug-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media