Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A dynamic multi-objective evolutionary algorithm with variable stepsize and dual prediction strategies

Published: 18 November 2024 Publication History

Abstract

The prediction strategy is a key method for solving dynamic multi-objective optimization problems (DMOPs), particularly the commonly used linear prediction strategy, which has an advantage in solving problems with regular changes. However, using the linear prediction strategy may have limited advantages in addressing problems with complex changes, as it may result in the loss of population diversity. To tackle this issue, this paper proposes a dynamic multi-objective optimization algorithm with variable stepsize and dual prediction strategies (VSDPS), which aims to maintain population diversity while making predictions. When an environmental change is detected, the variable stepsize is first calculated. The stepsize of the nondominated solutions is expressed by the centroid of the population, while the stepsize of the dominated solutions is determined by the centroids of the clustered subpopulations. Then, the dual prediction strategies combine an improved linear prediction strategy with a dynamic particle swarm prediction strategy to track the new Pareto-optimal front (PF) or Pareto-optimal set (PS). The improved linear prediction strategy aims to enhance the convergence of the population, while the dynamic particle swarm prediction strategy focuses on preserving the diversity of the population. There have also been some improvements made in the static optimization phase, which are advantageous for both population convergence and diversity. VSDPS is compared with six state-of-the-art dynamic multi-objective evolutionary algorithms (DMOEAs) on 28 test instances. The experimental results demonstrate that VSDPS outperforms the compared algorithms in most instances.

Highlights

Using the linear prediction strategy only may result in the loss of population diversity.
A dynamic particle swarm prediction strategy is used to increase the population diversity.
An improved linear prediction strategy is used to improve the population convergence.
Nondominated and dominated solutions have different stepsizes when making predictions.
Dual prediction strategies are proposed to predict the population at next time.

References

[1]
Audoux Y., Montemurro M., Pailhès J., Non-uniform rational basis spline hyper-surfaces for metamodelling, Comput. Methods Appl. Mech. Engrg. 364 (2020).
[2]
Costa G., Montemurro M., Pailhès J., A general hybrid optimization strategy for curve fitting in the non-uniform rational basis spline framework, J. Optim. Theory Appl. 176 (2018) 225–251.
[3]
Bertolino G., Montemurro M., Perry N., Pourroy F., An efficient hybrid optimization strategy for surface reconstruction, in: Computer Graphics Forum, Vol. 40, 2021, pp. 215–241.
[4]
Gong Y., Bian K., Hao F., Sun Y., Wu Y., Dependent tasks offloading in mobile edge computing: A multi-objective evolutionary optimization strategy, Future Gener. Comput. Syst. 148 (2023) 314–325.
[5]
Peng H., Wang C., Han Y., Xiao W., Zhou X., Wu Z., Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization, Future Gener. Comput. Syst. 131 (2022) 59–74.
[6]
Peng H., Kong F., Zhang Q., Micro multiobjective evolutionary algorithm with piecewise strategy for embedded-processor-based industrial optimization, IEEE Trans. Cybern. (2023) 1–12.
[7]
Luna F., Zapata-Cano P.H., Gonzalez-Macias J.C., Valenzuela-Valdés J.F., Approaching the cell switch-off problem in 5G ultra-dense networks with dynamic multi-objective optimization, Future Gener. Comput. Syst. 110 (2020) 876–891.
[8]
Zheng J., Zhou F., Zou J., Yang S., Hu Y., A dynamic multi-objective optimization based on a hybrid of pivot points prediction and diversity strategies, Swarm Evol. Comput. 78 (2023).
[9]
Macias-Escobar T., Cruz-Reyes L., Fraire H., Dorronsoro B., Plane Separation: A method to solve dynamic multi-objective optimization problems with incorporated preferences, Future Gener. Comput. Syst. 110 (2020) 864–875.
[10]
Zhang Z., Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control, Appl. Soft Comput. 8 (2) (2008) 959–971.
[11]
Liu S., Lin Q., Wong K.-C., Ma L., Coello Coello C.A., Gong D., A novel multi-objective evolutionary algorithm with dynamic decomposition strategy, Swarm Evol. Comput. 48 (2019) 182–200.
[12]
Xiong J., Zhou Z., Tian K., Liao T., Shi J., A multi-objective approach for weapon selection and planning problems in dynamic environments, J. Ind. Manage. Optim. 13 (3) (2017) 1189–1211.
[13]
X. Peng, D. Xu, F. Zhang, UAV online path planning based on dynamic multiobjective evolutionary algorithm, in: Proceedings of the 30th Chinese Control Conference, 2011, pp. 5424–5429.
[14]
Wu Y., Jin Y., Liu X., A directed search strategy for evolutionary dynamic multiobjective optimization, Soft Comput. 19 (2015) 3221–3235.
[15]
Wang F., Liao F., Li Y., Wang H., A new prediction strategy for dynamic multi-objective optimization using Gaussian Mixture Model, Inform. Sci. 580 (2021) 331–351.
[16]
Rong M., Gong D., Pedrycz W., Wang L., A multimodel prediction method for dynamic multiobjective evolutionary optimization, IEEE Trans. Evol. Comput. 24 (2) (2019) 290–304.
[17]
Cao L., Xu L., Goodman E., Li H., A First-Order Difference Model-Based Evolutionary Dynamic Multiobjective Optimization, Springer, 2017, pp. 644–655.
[18]
Muruganantham A., Tan K.C., Vadakkepat P., Evolutionary dynamic multiobjective optimization via kalman filter prediction, IEEE Trans. Cybern. 46 (12) (2016) 2862–2873.
[19]
Zhou A., Jin Y., Zhang Q., A population prediction strategy for evolutionary dynamic multiobjective optimization, IEEE Trans. Cybern. 44 (1) (2013) 40–53.
[20]
Zou J., Li Q., Yang S., Bai H., Zheng J., A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization, Appl. Soft Comput. 61 (2017) 806–818.
[21]
K. Deb, U.B. Rao N, S. Karthik, Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling, in: International Conference on Evolutionary Multi-criterion Optimization, 2007, pp. 803–817.
[22]
Ruan G., Yu G., Zheng J., Zou J., Yang S., The effect of diversity maintenance on prediction in dynamic multi-objective optimization, Appl. Soft Comput. 58 (2017) 631–647.
[23]
Chen Y., Zou J., Liu Y., Yang S., Zheng J., Huang W., Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization, Swarm Evol. Comput. 70 (2022).
[24]
Zheng J., Zhang B., Zou J., Yang S., Hu Y., A dynamic multi-objective evolutionary algorithm based on Niche prediction strategy, Appl. Soft Comput. 142 (2023).
[25]
Yan L., Qi W., Qin A., Yang S., Gong D., Qu B., Liang J., Manifold clustering-based prediction for dynamic multiobjective optimization, Swarm Evol. Comput. 77 (2023).
[26]
Rong M., Gong D., Zhang Y., Jin Y., Pedrycz W., Multidirectional prediction approach for dynamic multiobjective optimization problems, IEEE Trans. Cybern. 49 (9) (2019) 3362–3374.
[27]
Li H., Zhang Q., Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput. 13 (2) (2008) 284–302.
[28]
Deb K., Pratap A., Agarwal S., Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.
[29]
Zhang Q., Zhou A., Jin Y., RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm, IEEE Trans. Evol. Comput. 12 (1) (2008) 41–63.
[30]
Azzouz R., Bechikh S., Ben Said L., Dynamic multi-objective optimization using evolutionary algorithms: a survey, Recent Adv. Evol. Multi-Obj. Optim. (2017) 31–70.
[31]
Jiang S., Zou J., Yang S., Yao X., Evolutionary dynamic multi-objective optimisation: A survey, ACM Comput. Surv. 55 (4) (2022) 1–47.
[32]
Raquel C., Yao X., Dynamic multi-objective optimization: a survey of the state-of-the-art, in: Evolutionary Computation for Dynamic Optimization Problems, Springer, 2013, pp. 85–106.
[33]
Peng H., Mei C., Zhang S., Luo Z., Zhang Q., Wu Z., Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses, Swarm Evol. Comput. 82 (2023).
[34]
Liu Z., Wang H., A data augmentation based Kriging-assisted reference vector guided evolutionary algorithm for expensive dynamic multi-objective optimization, Swarm Evol. Comput. 75 (2022).
[35]
Wang P., Ma Y., Wang M., A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy, Swarm Evol. Comput. 75 (2022) 101–164.
[36]
Jiang M., Huang Z., Qiu L., Huang W., Yen G.G., Transfer learning-based dynamic multiobjective optimization algorithms, IEEE Trans. Evol. Comput. 22 (4) (2017) 501–514.
[37]
Farina M., Deb K., Amato P., Dynamic multiobjective optimization problems: test cases, approximations, and applications, IEEE Trans. Evol. Comput. 8 (5) (2004) 425–442.
[38]
Liu X.-F., Zhou Y.-R., Yu X., Cooperative particle swarm optimization with reference-point-based prediction strategy for dynamic multiobjective optimization, Appl. Soft Comput. 87 (2020) 105–988.
[39]
Wang P., Ma Y., Wang M., A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy, Swarm Evol. Comput. 75 (2022).
[40]
Liu R., Li J., Mu C., Jiao L., et al., A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization, European J. Oper. Res. 261 (3) (2017) 1028–1051.
[41]
A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization, in: International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 832–846.
[42]
S.-Y. Zeng, G. Chen, L. Zheng, H. Shi, H. de Garis, L. Ding, L. Kang, A dynamic multi-objective evolutionary algorithm based on an orthogonal design, in: 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 573–580.
[43]
Peng Z., Zheng J., Zou J., Liu M., Novel prediction and memory strategies for dynamic multiobjective optimization, Soft Comput. 19 (2015) 2633–2653.
[44]
Liang Z., Zheng S., Zhu Z., Yang S., Hybrid of memory and prediction strategies for dynamic multiobjective optimization, Inform. Sci. 485 (2019) 200–218.
[45]
Xu B., Zhang Y., Gong D., Guo Y., Rong M., Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization, IEEE/ACM Trans. Comput. Biol. Bioinform. 15 (6) (2017) 1877–1890.
[46]
Zhang Q., Yang S., Jiang S., Wang R., Li X., Novel prediction strategies for dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 24 (2) (2019) 260–274.
[47]
Hu Y., Zheng J., Jiang S., Yang S., Zou J., Handling dynamic multiobjective optimization environments via layered prediction and subspace-based diversity maintenance, IEEE Trans. Cybern. 53 (4) (2021) 2572–2585.
[48]
Chen L., Wang H., Pan D., Wang H., Gan W., Wang D., Zhu T., Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy, Knowl.-Based Syst. 246 (2022) 108–691.
[49]
Chen C., Tseng L.-Y., An improved version of the multiple trajectory search for real value multi-objective optimization problems, Eng. Optim. 46 (10) (2014) 1430–1445.
[50]
Agrawal R., Deb K., Agrawal R., Simulated binary crossover for continuous search space, Complex Systems 9 (1994) 115–148.
[51]
Goh C.-K., Tan K.C., A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 13 (1) (2009) 103–127.
[52]
S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation, in: IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1–18.
[53]
Chen R., Li K., Yao X., Dynamic multiobjectives optimization with a changing number of objectives, IEEE Trans. Evol. Comput. 22 (1) (2017) 157–171.
[54]
Jiang S., Yang S., A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 21 (1) (2017) 65–82.
[55]
Cao L., Xu L., Goodman E.D., Li H., Decomposition-based evolutionary dynamic multiobjective optimization using a difference model, Appl. Soft Comput. 76 (2019) 473–490.
[56]
Hu Y., Zheng J., Zou J., Yang S., Ou J., Wang R., A dynamic multi-objective evolutionary algorithm based on intensity of environmental change, Inform. Sci. 523 (2020) 49–62.
[57]
Gu Z.-M., Wang G.-G., Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Future Gener. Comput. Syst. 107 (2020) 49–69.
[58]
Paknejad P., Khorsand R., Ramezanpour M., Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment, Future Gener. Comput. Syst. 117 (2021) 12–28.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Future Generation Computer Systems
Future Generation Computer Systems  Volume 161, Issue C
Dec 2024
714 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 18 November 2024

Author Tags

  1. Dynamic multi-objective optimization
  2. Variable stepsize
  3. Dual prediction strategies

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media