Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Quantitative classical realizability

Published: 01 April 2015 Publication History

Abstract

Introduced by Dal Lago and Hofmann, quantitative realizability is a technique used to define models for logics based on Multiplicative Linear Logic. A particularity is that functions are interpreted as bounded time computable functions. It has been used to give new and uniform proofs of soundness of several type systems with respect to certain time complexity classes. We propose a reformulation of their ideas in the setting of Krivine's classical realizability. The framework obtained generalizes Dal Lago and Hofmann's realizability, and reveals deep connections between quantitative realizability and a linear variant of Cohen's forcing.

References

[1]
P. Baillot, Elementary linear logic revisited for polynomial time and an exponential time hierarchy, in: Programming Languages and Systems, Springer, Berlin, Heidelberg, 2011, pp. 337-352.
[2]
P. Baillot, V. Mogbil, Soft lambda-calculus: a language for polynomial time computation, in: Foundations of Software Science and Computation Structures, Springer, 2004, pp. 27-41.
[3]
A. Brunel, K. Terui, Church ¿ Scott = Ptime : an application of resource sensitive realizability, Electro. Proc. Theor. Comp. Sci., 23 (2010).
[4]
P.J. Cohen, The independence of the continuum hypothesis, Proc. Natl. Acad. Sci. USA, 50 (1963) 1143.
[5]
P.-L. Curien, H. Herbelin, The duality of computation, in: ACM SIGPLAN Not., vol. 35, ACM, 2000, pp. 233-243.
[6]
C. Dwork, Differential privacy, Autom. Lang. Program. (2006) 1-12.
[7]
J.-Y. Girard, Linear logic, Theor. Comput. Sci., 50 (1987) 1-101.
[8]
J.-Y. Girard, A new constructive logic: classic logic, Math. Struct. Comput. Sci., 1 (1991) 255-296.
[9]
M. Hofmann, Safe recursion with higher types and bck-algebra, Ann. Pure Appl. Log., 104 (2000) 113-166.
[10]
M. Hofmann, P.J. Scott, Realizability models for BLL-like languages, Theor. Comput. Sci., 318 (2004) 121-137.
[11]
S.-C. Kleene, Formalized Recursive Functionals and Formalized Realizability, Amer. Mathematical Society, 1969.
[12]
J.-L. Krivine, Realizability in classical logic, Panoramas et syntheses, Société Mathématique de France, May 2004.
[13]
J.-L. Krivine, A call-by-name lambda-calculus machine, High.-Order Symb. Comput., 20 (2007) 199-207.
[14]
J.-L. Krivine, Realizability algebras: a program to well order R, manuscript, 2010.
[15]
J.-L. Krivine, Realizability algebras II: new models of ZF+ DC. arXiv:1007.0825
[16]
U. Dal Lago, M. Hofmann, Bounded linear logic, revisited, in: Lect. Notes Comput. Sci., vol. 5608, 2009, pp. 80-94.
[17]
U. Dal Lago, M. Hofmann, A semantic proof of polytime soundness of light affine logic, Theory Comput. Syst., 46 (2010) 673-689.
[18]
U. Dal Lago, M. Hofmann, Realizability models and implicit complexity, Theor. Comput. Sci., 412 (2011) 2029-2047.
[19]
S. Lengrand, A. Miquel, Classical F omega}, orthogonality and symmetric candidates, Ann. Pure Appl. Log., 153 (2008) 3-20.
[20]
A. Saurin, M. Basaldella, K. Terui, On the meaning of focalization, 6505 (2011) 78-87.
[21]
A. Miquel, Classical program extraction in the calculus of constructions, in: Computer Science Logic, Springer, 2007, pp. 313-327.
[22]
A. Miquel, Forcing as a program transformation, in: 26th Annual IEEE Symposium on Logic in Computer Science, IEEE, 2011, pp. 197-206.
[23]
G. Munch-Maccagnoni, Focalisation and classical realisability, in: Computer Science Logic, Springer, 2009, pp. 409-423.
[24]
M. Okada, Phase semantic cut-elimination and normalization proofs of first-and higher-order linear logic, Theor. Comput. Sci., 227 (1999) 333-396.
[25]
M. Pagani, L. Tortora de Falco, Strong normalization property for second order linear logic, Theor. Comput. Sci., 411 (2010) 410-444.
[26]
J. Reed, B.C. Pierce, Distance makes the types grow stronger: a calculus for differential privacy, in: ACM SIGPLAN Not., vol. 45, ACM, 2010, pp. 157-168.

Cited By

View all
  • (2018)Parametric polymorphism and operational improvementProceedings of the ACM on Programming Languages10.1145/32367632:ICFP(1-24)Online publication date: 30-Jul-2018
  • (2015)Polarised Intermediate Representation of Lambda Calculus with SumsProceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS.2015.22(127-140)Online publication date: 6-Jul-2015
  • (2014)A Core Quantitative Coeffect CalculusProceedings of the 23rd European Symposium on Programming Languages and Systems - Volume 841010.1007/978-3-642-54833-8_19(351-370)Online publication date: 5-Apr-2014
  1. Quantitative classical realizability

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Information and Computation
    Information and Computation  Volume 241, Issue C
    April 2015
    350 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 April 2015

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 21 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Parametric polymorphism and operational improvementProceedings of the ACM on Programming Languages10.1145/32367632:ICFP(1-24)Online publication date: 30-Jul-2018
    • (2015)Polarised Intermediate Representation of Lambda Calculus with SumsProceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS.2015.22(127-140)Online publication date: 6-Jul-2015
    • (2014)A Core Quantitative Coeffect CalculusProceedings of the 23rd European Symposium on Programming Languages and Systems - Volume 841010.1007/978-3-642-54833-8_19(351-370)Online publication date: 5-Apr-2014

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media