Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Unifying lower bounds for algebraic machines, semantically

Published: 18 February 2025 Publication History

Abstract

We present a new abstract method for proving lower bounds in computational complexity based on the notion of topological and measurable entropy for dynamical systems. It is shown to generalise several previous lower bounds results from the literature in algebraic complexity, thus providing a unifying framework for “topological” proofs of lower bounds. We further use this method to prove that maxflow, a ▪ complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class “prams without bit operations”, making more precise the relationship between Mulmuley's result and similar lower bounds on real prams.

References

[1]
J.M. Steele, A. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3 (1982) 1–8,.
[2]
M. Ben-Or, Lower bounds for algebraic computation trees, in: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC '83, ACM, New York, NY, USA, 1983, pp. 80–86,. http://doi.acm.org/10.1145/800061.808735.
[3]
F. Cucker, P _ r ≠ NC _ r, J. Complex. 8 (3) (1992) 230–238,. http://www.sciencedirect.com/science/article/pii/0885064X92900246.
[4]
K. Mulmuley, Lower bounds in a parallel model without bit operations, SIAM J. Comput. 28 (4) (1999) 1460–1509,.
[5]
A. Cobham, The intrinsic computational difficulty of functions, in: Proceedings of the 1964 CLMPS, 1965.
[6]
J. Edmonds, Paths, trees and flowers, Can. J. Math. 17 (1965) 449–467.
[7]
M.O. Rabin, Mathematical theory of automata, Proc. Symp. Appl. Math. 19 (1967) 159–160.
[8]
S. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd ACM Symposium on Theory of Computing, 1971.
[9]
R. Williams, Nonuniform acc circuit lower bounds, J. ACM 61 (1) (2014) 2:1–2:32,. http://doi.acm.org/10.1145/2559903.
[10]
T. Baker, J. Gill, R. Solovay, Relativizations of the p = np question, SIAM J. Comput. 4 (4) (1975) 431–442,.
[11]
A.A. Razborov, S. Rudich, Natural proofs, J. Comput. Syst. Sci. 55 (1) (1997) 24–35,.
[12]
S. Aaronson, A. Wigderson, Algebrization: a new barrier in complexity theory, ACM Trans. Comput. Theory 1 (1) (2009) 2:1–2:54,. http://doi.acm.org/10.1145/1490270.1490272.
[13]
B. Aydinlioğlu, E. Bach, Affine relativization: unifying the algebrization and relativization barriers, ACM Trans. Comput. Theory 10 (1) (2018),.
[14]
K.D. Mulmuley, The gct program toward the p vs. np problem, Commun. ACM 55 (6) (2012) 98–107,. http://doi.acm.org/10.1145/2184319.2184341.
[15]
L. Fortnow, The status of the p versus np problem, Commun. ACM 52 (9) (2009) 78–86,. http://doi.acm.org/10.1145/1562164.1562186.
[16]
P. Bürgisser, C. Ikenmeyer, G. Panova, No occurrence obstructions in geometric complexity theory, in: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 2016, pp. 386–395,.
[17]
C. Ikenmeyer, U. Kandasamy, Implementing geometric complexity theory: on the separation of orbit closures via symmetries, in: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Association for Computing Machinery, New York, NY, USA, 2020, pp. 713–726,.
[18]
C.A. Neff, Specified precision polynomial root isolation is in ▪, J. Comput. Syst. Sci. 48 (3) (1994) 429–463,.
[19]
L.R. Ford, D.R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem, Can. J. Math. (1957) 210–218.
[20]
L.M. Goldschlager, R.A. Shaw, J. Staples, The maximum flow problem is log space complete for p, Theor. Comput. Sci. 21 (1982) 105–111,.
[21]
T. Seiller, Interaction Graphs: Full Linear Logic, IEEE/ACM Logic in Computer Science, vol. LICS, 2016, http://arxiv.org/pdf/1504.04152.
[22]
T. Seiller, Interaction graphs: graphings, Ann. Pure Appl. Log. 168 (2) (2017) 278–320,.
[23]
T. Seiller, Interaction graphs: nondeterministic automata, ACM Trans. Comput. Log. 19 (3) (2018).
[24]
T. Seiller, Interaction Graphs: Exponentials, Logical Methods in, Computer Science, vol. 15, Aug. 2019,. https://lmcs.episciences.org/5730.
[25]
J. Milnor, On the Betti numbers of real varieties, in: Proceedings of the, American Mathematical Society, 1964, p. 275,.
[26]
O. Oleĭnik, I. Petrovskii, On the topology of real algebraic surfaces, Izv. Akad. Nauk SSSR 13 (1949) 389–402.
[27]
R. Thom, Sur l'homologie des variétés algébriques réelles, Princeton University Press, 1965, pp. 255–265.
[28]
T. Seiller, Mathematical informatics, Habilitation thesis Sorbonne Paris Nord University, 2024, https://theses.hal.science/tel-04616661.
[29]
S. Adams, Trees and amenable equivalence relations, Ergod. Theory Dyn. Syst. 10 (1990) 1–14.
[30]
D. Gaboriau, Coût des relations d'équivalence et des groupes, Invent. Math. 139 (2000) 41–98,.
[31]
D. Gaboriau, Invariants ℓ 2 de relations d'équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. 95 (93–150) (2002) 15–28.
[32]
Seiller, T. (2021): Zeta functions and the (linear) logic of Markov processes. https://hal.archives-ouvertes.fr/hal-02458330.
[33]
Seiller, T. (2015): Towards a complexity-through-realizability theory. http://arxiv.org/pdf/1502.01257.
[34]
P.J. Carstensen, The complexity of some problems in parametric linear and combinatorial programming, Ph.D. thesis, Ann Arbor, MI, USA 1983.
[35]
A.C.-C. Yao, Decision tree complexity and Betti numbers, J. Comput. Syst. Sci. 55 (1) (1997) 36–43,.
[36]
R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Trans. Am. Math. Soc. 114 (2) (1965) 309–319.
[37]
J.E. Hofer, Topological entropy for noncompact spaces, Mich. Math. J. 21 (3) (1975) 235–242,.
[38]
L.W. Goodwyn, The product theorem for topological entropy, Trans. Am. Math. Soc. 158 (2) (1971) 445–452. http://www.jstor.org/stable/1995916.
[39]
L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc. (N.S.) 21 (1) (1989) 1–46,.
[40]
K.G. Murty, Computational complexity of parametric linear programming, Math. Program. 19 (1) (1980) 213–219.
[41]
G.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in: Automata Theory and Formal Languages 2nd GI Conference, Kaiserslautern, May 20–23, 1975, Springer, 1975, pp. 134–183.

Index Terms

  1. Unifying lower bounds for algebraic machines, semantically
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Information and Computation
            Information and Computation  Volume 301, Issue PA
            Dec 2024
            398 pages

            Publisher

            Academic Press, Inc.

            United States

            Publication History

            Published: 18 February 2025

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 19 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media