Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Discrete area filters in accurate detection of faces and facial features

Published: 01 December 2014 Publication History

Abstract

This paper introduces a new method for detection of faces and facial features. Proposed algorithm denies the thesis that bottom-up solutions can't work at reasonable speed. It introduces fast detection - about 9 frames per second for a 384í 256 image - while preserving accurate details of the detection. Main experiments focus on the detection of the eye centers - crucial in many computer vision systems such as face recognition, eye movement detection or iris recognition, however algorithm is tuned to detect 15 fiducial face points. Models were trained on nearly frontal faces. Bottom-up approach allows to detect objects under partial occlusion - particularly two out of four face parts (left eye, right eye, nose, mouth) must be localized. Precision of the trained model is verified on the Feret dataset. Robustness of the face detection is evaluated on the BioID, LFPW, Feret, GT, Valid and Helen databases in comparison to the state of the art detectors.

References

[1]
L. Ding, A. Martinez, Features versus context: an approach for precise and detailed detection and delineation of faces and facial features, IEEE Trans. Pattern Anal. Mach. Intell., 32 (nov. 2010) 2022-2038.
[2]
A. Goldstein, L. Harmon, A. Lesk, Man-machine interaction in human face identification, Bell Syst. Tech., 51 (feb 1972) 399-428.
[3]
M. Fischler, R. Elschlager, The representation and matching of pictorial structures, IEEE Trans. Comput., 22 (1973) 67-92.
[4]
G. Antonini, V. Popovici, J. Thiran, Independent component analysis and support vector machine for face feature extraction, in: ser. Lecture Notes in Computer Science, vol. 2688, IEEE, Berlin, 2003, pp. 111-118.
[5]
O. Celiktutan, H. Akakin, B. Sankur, Multi-attribute robust facial feature localization, in: Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE International Conference on, 2008, pp. 1-6.
[6]
J. Matas, P. Bílek, M. Hamouz, J. Kittler, Discriminative regions for human face detection, in: Proceedings of Asian Conference on Computer Vision, 2002.
[7]
M. Hamouz, J. Kittler, J.-K. Kamarainen, P. Paalanen, H. Kalviainen, J. Matas, Feature-based affine-invariant localization of faces, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005) 1490-1495.
[8]
T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, Lect. Notes Comput. Sci, 1407 (1998).
[9]
P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection, 1997.
[10]
T. Kim, H. Kim, W. Hwang, S. Kee, J. Kittler, Component-based lda face descriptor for image retrieval, 2002.
[11]
K. Hotta, T. Kurita, T. Mishima, Scale invariant face detection method using higher-order local autocorrelation features extracted from log-polar image, in: FG '98: Proceedings of the 3rd. International Conference on Face & Gesture Recognition, IEEE Computer Society, Washington, DC, USA, 1998, pp. 70.
[12]
H. Jee, K. Lee, S. Pan, Eye and face detection using SVM, in: Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004. Proceedings of the 2004, Dec. 2004, pp. 577-580.
[13]
Z. Zhu, Q. Ji, Robust real-time eye detection and tracking under variable lighting conditions and various face orientations, Comput. Vis. Image Underst., 98 (2005) 124-154.
[14]
M.H. Nguyen, J. Perez, F.D. la Torre Frade, Facial feature detection with optimal pixel reduction SVMs, in: 8th IEEE International Conference on Automatic Face and Gesture Recognition, Sept. 2008.
[15]
H. Rowley, S. Baluja, T. Kanade, Neural network-based face detection, IEEE Trans. Pattern Anal. Mach. Intell., 20 (1996) 23-38.
[16]
M. Reinders, R.W.C. Koch, J. Gerbrands, Locating facial features in image sequences using neural networks, in: 2nd International Conference on Automatic Face and Gesture Recognition, 1997, pp. 230-235.
[17]
S. Duffner, C. Garcia, A connexionist approach for robust and precise facial feature detection in complex scenes, in: Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International Symposium on, Sept. 2005, pp. 316-321.
[18]
P. Viola, M. Jones, Robust real-time face detection, Int. J. Comput. Vis., 57 (2004) 137-154.
[19]
P. Viola, M. Jones, Fast and robust classification using asymmetric AdaBoost and a detector cascade, in: Advances in Neural Information Processing System 14, MIT Press, 2001, pp. 1311-1318.
[20]
R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection, 2003.
[21]
G. Donato, M.S. Bartlett, J.C. Hager, P. Ekman, T.J. Sejnowski, Classifying facial actions, IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999) 974-989.
[22]
M. Lades, J. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R. Würtz, W. Konen, Distortion invariant object recognition in the dynamic link architecture, IEEE Trans. Comput., 42 (1993) 300-311.
[23]
L. Wiskott, J. Fellous, N. Krger, C. von der Malsburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997) 775-779.
[24]
S. Jahanbin, A. Bovik, H. Choi, Automated Facial Feature Detection From Portrait and Range Images, 2008.
[25]
D. Vukadinovic, M. Pantic, Fully automatic facial feature point detection using Gabor feature based boosted classifiers, in: Proceedings of IEEE ICSMS, 2005.
[26]
I. Fasel, M. Bartlett, J. Movellan, A comparison of Gabor filter methods for automatic detection of facial landmarks, 2002.
[27]
T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models - their training and application, Comput. Vis. Image Underst., 61 (1995) 38-59.
[28]
Milborrow, F. Nicolls, Locating facial features with an extended active shape model, in: Proceedings of the 10th European Conference on Computer Vision: Part IV. Berlin, Springer-Verlag, Heidelberg, 2008, pp. 504-513.
[29]
M. Al Haj, J. Orozco, J. Gonzalez, J. Villanueva, Automatic face and facial features initialization for robust and accurate tracking, in: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, dec. 2008, pp. 1-4.
[30]
V. Le, J. Brandt, Z. Lin, L. Bourdev, T. Huang, Interactive facial feature localization, in: ser. Lecture Notes in Computer Science, vol. 7574, Springer Berlin Heidelberg, 2012, pp. 679-692.
[31]
P.N. Belhumeur, D.W. Jacobs, D.J. Kriegman, N. Kumar, Localizing parts of faces using a consensus of exemplars, in: The 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011.
[32]
M. Valstar, B. Martinez, X. Binefa, M. Pantic, Facial point detection using boosted regression and graph models, in: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, June 2010, pp. 2729-2736.
[33]
X. Zhu, D. Ramanan, Face detection, pose estimation, and landmark localization in the wild, in: CVPR. IEEE, 2012, pp. 2879-2886.
[34]
M. Beigzadeh, M. Vafadoost, Detection of face and facial features in digital images and video frames, in: Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International, dec. 2008, pp. 1-4.
[35]
K. Sobottka, I. Pitas, Face localization and facial feature extraction based on shape and color information, in: Image Processing, 1996. Proceedings., International Conference on, vol. 3, sep 1996, pp. 483-486.
[36]
D. Reisfeld, Y. Yeshurun, Robust detection of facial features by generalized symmetry, in: Pattern Recognition, 1992. Vol. I. Conference A: Computer Vision and Applications, Proceedings., 11th IAPR International Conference on, Aug-3 Sep 1992, pp. 117-120.
[37]
I. Craw, D. Tock, A. Bennett, Finding Face Features, 1992.
[38]
B. Froba, C. Kublbeck, Robust face detection at video frame rate based on edge orientation features, in: Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on, may 2002, pp. 342-347.
[39]
X. Xiong, F. De la Torre, Supervised descent method and its applications to face alignment, in: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), May 2013.
[40]
A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, Robust discriminative response map fitting with constrained local models, in: ser. CVPR '13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 3444-3451.
[41]
J. Naruniec, W. Skarbek, Face detection by discrete Gabor jets and reference graph of fiducial points, in: Rough Sets and Knowledge Technology, Springer Berlin, Heidelberg, 2007, pp. 187-194.
[42]
J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986) 679-698.
[43]
T. Ojala, M. Pietikinen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) 971-987.
[44]
S. Leutenegger, M. Chli, R. Siegwart, BRISK: binary robust invariant scalable keypoints, in: Proceedings of the IEEE International Conference on Computer Vision, 2011.
[45]
R. Ortiz, Freak: fast retina keypoint, in: ser. CVPR '12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 510-517.
[46]
R. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen., 7 (1936) 179-188.
[47]
K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1992.
[48]
M. Bober, K. Kucharski, W. Skarbek, Face recognition by fisher and scatter linear discriminant analysis, 2003.
[49]
K. Kucharski, Face Indexing by Image Components Method, Warsaw University of Technology, 2006.
[50]
B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved categorization and segmentation, Int. J. Comput. Vis., 77 (May 2008) 259-289.
[51]
D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recogn., 13 (1981) 111-122.
[52]
M. Bober, Description of MPEG-7 visual core experiments, in: Tech. Rep. JTC1/SC29/WG11 N4749, 2002.
[53]
N.A. Fox, B.A. O'Mullane, R.B. Reilly, The realistic multi-modal valid database and visual speaker identification comparison experiments, in: Proc. of the 5th International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA-2005), 2005.
[54]
K. Messer, J. Matas, J. Kittler, J. Luttin, G. Maitre, XM2VTSDB: the extended M2VTS database, in: In Second International Conference on Audio and Video-based Biometric Person Authentication, 1999, pp. 72-77.
[55]
P. Phillips, H. Moon, S. Rizvi, P. Rauss, The Feret evaluation methodology for face-recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 22 (oct 2000) 1090-1104.
[56]
V. Le, J. Brandt, Z. Lin, L. Bourdev, T. Huang, Interactive facial feature localization, in: ser. ECCV'12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 679-692.

Cited By

View all
  • (2017)Using a Probabilistic Neural Network for lip-based biometric verificationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2017.06.00364:C(112-127)Online publication date: 1-Sep-2017

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Image and Vision Computing
Image and Vision Computing  Volume 32, Issue 12
December 2014
238 pages

Publisher

Butterworth-Heinemann

United States

Publication History

Published: 01 December 2014

Author Tags

  1. Discrete area filers
  2. Face detection
  3. Facial features detection
  4. mLDA cascade

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2017)Using a Probabilistic Neural Network for lip-based biometric verificationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2017.06.00364:C(112-127)Online publication date: 1-Sep-2017

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media