Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Particle filter robot localisation through robust fusion of laser, WiFi, compass, and a network of external cameras

Published: 01 January 2016 Publication History

Abstract

Particle filter robot localisation fusing 2D laser, WiFi, compass and external cameras.Works with any sensor combination (even if unsynchronized or different data rates).Experiments in controlled situations and real operation in social events.Analysis and discussion of performance of each sensor and all sensor combinations.Best results obtained from the fusion of all the sensors (statistical significance). In this paper, we propose a multi-sensor fusion algorithm based on particle filters for mobile robot localisation in crowded environments. Our system is able to fuse the information provided by sensors placed on-board, and sensors external to the robot (off-board). We also propose a methodology for fast system deployment, map construction, and sensor calibration with a limited number of training samples. We validated our proposal experimentally with a laser range-finder, a WiFi card, a magnetic compass, and an external multi-camera network. We have carried out experiments that validate our deployment and calibration methodology. Moreover, we performed localisation experiments in controlled situations and real robot operation in social events. We obtained the best results from the fusion of all the sensors available: the precision and stability was sufficient for mobile robot localisation. No single sensor is reliable in every situation, but nevertheless our algorithm works with any subset of sensors: if a sensor is not available, the performance just degrades gracefully.

References

[1]
S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, Cambridge, MA, 2005.
[2]
V. Alvarez-Santos, A. Canedo-Rodriguez, R. Iglesias, X. Pardo, C. Regueiro, M. Fernandez-Delgado, Route learning and reproduction in a tour-guide robot, Robot. Autonomous Syst., 63 (2015) 206-213.
[3]
V. Alvarez-Santos, X.M. Pardo, R. Iglesias, A. Canedo-Rodriguez, C.V. Regueiro, Feature analysis for human recognition and discrimination: application to a person-following behaviour in a mobile robot, Robot. Autonomous Syst., 60 (2012) 1021-1036.
[4]
V. Alvarez-Santos, R. Iglesias, X.M. Pardo, C.V. Regueiro, A. Canedo-Rodriguez, Gesture-based interaction with voice feedback for a tour-guide robot, J. Visual Commun. Image Represent., 25 (2014) 499-509.
[5]
A. Canedo-Rodriguez, C.V. Regueiro, R. Iglesias, V. Alvarez-Santos, X.M. Pardo, Self-organized multi-camera network for ubiquitous robot deployment in unknown environments, Robot. Autonomous Syst., 61 (2013) 667-675.
[6]
A. Canedo-Rodriguez, R. Iglesias, C.V. Regueiro, V. Alvarez-Santos, X.M. Pardo, Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments, Sensors, 13 (2013) 426-454.
[7]
G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with Rao-Blackwellized particle filters, IEEE Trans. Robot., 23 (2007) 34-46.
[8]
H. Morioka, S. Yi, O. Hasegawa, Vision-based mobile robot's slam and navigation in crowded environments, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 3998-4005.
[9]
J.D. Tardos, J. Neira, P.M. Newman, J.J. Leonard, Robust mapping and localization in indoor environments using sonar data, Int. J. Robot. Res., 21 (2002) 311-330.
[10]
A. Corominas Murtra, Map-based localization for urban service mobile robotics, Ph.D. thesis, Universitat Politècnica de Catalunya, 2011.
[11]
C. Gamallo, M. Mucientes, C.V. Regueiro, Omnidirectional visual slam under severe occlusions, Robot. Autonomous Syst., 65 (2015) 76-87.
[12]
B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: a review of the state-of-the-art, Inform. Fusion, 14 (2013) 28-44.
[13]
J.-H. Kim, K.-H. Lee, Y.-D. Kim, N.S. Kuppuswamy, J. Jo, Ubiquitous robot: a new paradigm for integrated services, in: IEEE International Conference on Robotics and Automation, 2007, pp. 2853-2868.
[14]
A. Sanfeliu, N. Hagita, A. Saffiotti, Network robot systems, Robot. Autonomous Syst., 56 (2008) 793-797.
[15]
A. Canedo-Rodriguez, V. Alvarez-Santos, D. Santos-Saavedra, C. Gamallo, M. Fernandez-Delgado, R. Iglesias, C. Regueiro, Robust multi-sensor system for mobile robot localization, in: Natural and Artificial Computation in Engineering and Medical Applications, vol. 7931 of Lecture Notes in Computer Science, 2013, pp. 92-101.
[16]
M. Labbe, F. Michaud, Online global loop closure detection for large-scale multi-session graph-based slam, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 2661-2666.
[17]
A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse, Monoslam: real-time single camera slam, IEEE Trans. Pattern Anal. Machine Intell., 29 (2007) 1052-1067.
[18]
J. Wolf, W. Burgard, H. Burkhardt, Robust vision-based localization by combining an image-retrieval system with monte carlo localization, IEEE Trans. Robot., 21 (2005) 208-216.
[19]
J. Fuentes-Pacheco, J. Ruiz-Ascencio, J.M. Rendón-Mancha, Visual simultaneous localization and mapping: a survey, Artif. Intell. Rev., 43 (2015) 55-81.
[20]
G. Deak, K. Curran, J. Condell, A survey of active and passive indoor localisation systems, Comput. Commun., 35 (2012) 1939-1954.
[21]
Y. Gu, A. Lo, I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, IEEE Commun. Surveys Tutor., 11 (2009) 13-32.
[22]
H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev., 37 (2007) 1067-1080.
[23]
A.M. Ladd, K.E. Bekris, A. Rudys, L.E. Kavraki, D.S. Wallach, Robotics-based location sensing using wireless ethernet, Wireless Netw., 11 (2005) 189-204.
[24]
J. Fink, V. Kumar, Online methods for radio signal mapping with mobile robots, in: IEEE International Conference on Robotics and Automation, 2010, pp. 1940-1945.
[25]
F. Duvallet, A.D. Tews, WiFi position estimation in industrial environments using Gaussian processes, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 2216-2221.
[26]
F. Della Rosa, M. Pelosi, J. Nurmi, Human-induced effects on rss ranging measurements for cooperative positioning, Int. J. Navigat. Observ., 2012 (2012) 1-13.
[27]
Y. Chapre, P. Mohapatra, S. Jha, A. Seneviratne, Received signal strength indicator and its analysis in a typical wlan system (short paper), in: IEEE 38th Conference on Local Computer Networks, 2013, pp. 304-307.
[28]
K. Kaemarungsi, P. Krishnamurthy, Properties of indoor received signal strength for wlan location fingerprinting, in: The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 14-23.
[29]
Y.-C. Chen, J.-R. Chiang, H.-H. Chu, P. Huang, A.W. Tsui, Sensor-assisted wi-fi indoor location system for adapting to environmental dynamics, in: Proceedings of the 8th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2005, pp. 118-125.
[30]
G. Deak, K. Curran, J. Condell, U. Londonderry, Device-free passive localization using rssi-based wireless network nodes, in: PGNeT 2010-The Eleventh Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting, 2010, pp. 241-246.
[31]
J. Ryckaert, P. De Doncker, R. Meys, A. de Le Hoye, S. Donnay, Channel model for wireless communication around human body, Electron. Lett., 40 (2004) 543-544.
[32]
P. Corke, R. Peterson, D. Rus, Localization and navigation assisted by networked cooperating sensors and robots, Int. J. Robot. Res., 24 (2005) 771-786.
[33]
D. Brscic, T. Kanda, T. Ikeda, T. Miyashita, Person tracking in large public spaces using 3-d range sensors, IEEE Trans. Human-Machine Syst., 43 (2013) 522-534.
[34]
D. Devarajan, Z. Cheng, R. Radke, Calibrating distributed camera networks, Proc. IEEE, 96 (2008) 1625-1639.
[35]
Y. He, X. Shen, Y. Liu, L. Mo, G. Dai, Listen: Non-interactive localization in wireless camera sensor networks, in: IEEE 31st Real-Time Systems Symposium, 2010, pp. 205-214.
[36]
I. Rekleitis, G. Dudek, Automated calibration of a camera sensor network, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3384-3389.
[37]
I. Rekleitis, D. Meger, G. Dudek, Simultaneous planning, localization, and mapping in a camera sensor network, Robot. Autonomous Syst., 54 (2006) 921-932.
[38]
D. Meger, D. Marinakis, I. Rekleitis, G. Dudek, Inferring a probability distribution function for the pose of a sensor network using a mobile robot, in: IEEE International Conference on Robotics and Automation, 2009, pp. 756-762.
[39]
X. Zhang, A.B. Rad, Y.-K. Wong, Sensor fusion of monocular cameras and laser rangefinders for line-based simultaneous localization and mapping (SLAM) tasks in autonomous mobile robots, Sensors, 12 (2012) 429-452.
[40]
J. Biswas, M. Veloso, Multi-sensor mobile robot localization for diverse environments, in: RoboCup 2013: Robot Soccer World Cup XVII, 2013, pp. 468-479.
[41]
C. Gamallo, P. Quintia, R. Iglesias, J.V. Lorenzo, C.V. Regueiro, Combination of a low cost GPS with visual localization based on a previous map for outdoor navigation, in: 11th International Conference on Intelligent Systems Design and Applications, 2011, pp. 1146-1151.
[42]
C. Chang, C. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol., 2 (2011) 27:1-27:27.
[43]
M. Quigley, D. Stavens, A. Coates, S. Thrun, Sub-meter indoor localization in unmodified environments with inexpensive sensors, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010) 2039-2046.
[44]
J.H. Lee, H. Hashimoto, Controlling mobile robots in distributed intelligent sensor network, IEEE Trans. Indust. Electron., 50 (2003) 890-902.
[45]
J.H. Lee, K. Morioka, N. Ando, H. Hashimoto, Cooperation of distributed intelligent sensors in intelligent environment, IEEE/ASME Trans. Mechatron., 9 (2004) 535-543.
[46]
P. Steinhaus, M. Strand, R. Dillmann, Autonomous robot navigation in human-centered environments based on 3D data fusion, EURASIP J. Appl. Signal Process., 2007 (2007) 224-235.
[47]
I. Fernandez, M. Mazo, J.L. Lazaro, D. Pizarro, E. Santiso, P. Martin, C. Losada, Guidance of a mobile robot using an array of static cameras located in the environment, Autonomous Robots, 23 (2007) 305-324.
[48]
C. Losada, M. Mazo, S.E. Palazuelos, D. Pizarro, M. Marron, J.F. Velasco, Identification and tracking of robots in an intelligent space using static cameras and an XPFCP, Robot. Autonomous Syst., 61 (2012) 75-85.
[49]
M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita, Interactive humanoid robots for a science museum, IEEE Intell. Syst., 22 (2007) 25-32.
[50]
M. Shiomi, T. Kanda, D.F. Glas, S. Satake, H. Ishiguro, N. Hagita, Field trial of networked social robots in a shopping mall, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 2846-2853.
[51]
A. Sanfeliu, J. Andrade-Cetto, M. Barbosa, R. Bowden, J. Capitan, A. Corominas, A. Gilbert, J. Illingworth, L. Merino, J.M. Mirats, P. Moreno, A. Ollero, J. Sequeira, M.T.J. Spaan, Decentralized sensor fusion for ubiquitous networking robotics in urban areas, Sensors, 10 (2010) 2274-2314.
[52]
D. Fox, Adapting the sample size in particle filters through KLD-sampling, Int. J. Robot. Res., 22 (2003) 985-1003.
[53]
M. Klaas, N.D. Freitas, A. Doucet, Toward practical N2 Monte Carlo: the marginal particle filter, in: Proceedings of Uncertainty in Artificial Intelligence, 2005, pp. 308-315.
[54]
M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50 (2002) 174-188.
[55]
F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerospace Electron. Syst. Mag., 25 (2010) 53-82.
[56]
R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw., 16 (2005) 645-678.
[57]
D. Pollard, A User's Guide to Measure Theoretic Probability, Cambridge University Press, 2002.
[58]
C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
[59]
T.B. Welch, R.L. Musselman, B.A. Emessiene, P.D. Gift, D.K. Choudhury, D.N. Cassadine, S.M. Yano, The effects of the human body on uwb signal propagation in an indoor environment, IEEE J. Select. Areas Commun., 20 (2002) 1778-1782.
[60]
M. Rampinelli, V.B. Covre, F.M. de Queiroz, R.F. Vassallo, T.F. Bastos-Filho, M. Mazo, An intelligent space for mobile robot localization using a multi-camera system, Sensors, 14 (2014) 15039-15064.
[61]
D. Meger, I. Rekleitis, G. Dudek, Heuristic search planning to reduce exploration uncertainty, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3392-3399.
[62]
I. Rekleitis, Simultaneous localization and uncertainty reduction on maps (slurm): Ear based exploration, in: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 501-507.
[63]
A. Howard, Multi-robot simultaneous localization and mapping using particle filters, Int. J. Robot. Res., 25 (2006) 1243-1256.
[64]
A.W. Tsui, Y.-H. Chuang, H.-H. Chu, Unsupervised learning for solving rss hardware variance problem in wifi localization, Mobile Netw. Appl., 14 (2009) 677-691.
[65]
J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011) 3-18.
[66]
U. Nehmzow, Mobile Robotics, Springer, 2003.

Cited By

View all
  • (2023)Robust and Scalable Indoor Robot Localization Based on Fusion of Infrastructure Camera Feeds and On-Board SensorsProceedings of the 2023 6th International Conference on Advances in Robotics10.1145/3610419.3610460(1-7)Online publication date: 5-Jul-2023
  • (2019)Absolute Indoor Positioning-aided Laser-based Particle Filter Localization with a Refinement StageIECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society10.1109/IECON.2019.8927475(597-603)Online publication date: 14-Oct-2019
  • (2017)Cooperative localization for disconnected sensor networks and a mobile robot in friendly environmentsInformation Fusion10.1016/j.inffus.2017.01.00137:C(22-36)Online publication date: 1-Sep-2017
  1. Particle filter robot localisation through robust fusion of laser, WiFi, compass, and a network of external cameras

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Information Fusion
    Information Fusion  Volume 27, Issue C
    January 2016
    255 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 January 2016

    Author Tags

    1. Multi-camera network
    2. Particle filter
    3. Robot localisation
    4. Sensor fusion
    5. WiFi localisation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Robust and Scalable Indoor Robot Localization Based on Fusion of Infrastructure Camera Feeds and On-Board SensorsProceedings of the 2023 6th International Conference on Advances in Robotics10.1145/3610419.3610460(1-7)Online publication date: 5-Jul-2023
    • (2019)Absolute Indoor Positioning-aided Laser-based Particle Filter Localization with a Refinement StageIECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society10.1109/IECON.2019.8927475(597-603)Online publication date: 14-Oct-2019
    • (2017)Cooperative localization for disconnected sensor networks and a mobile robot in friendly environmentsInformation Fusion10.1016/j.inffus.2017.01.00137:C(22-36)Online publication date: 1-Sep-2017

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media