Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery

Published: 01 September 2016 Publication History

Abstract

Two key weaknesses of STDFA including sensor difference and spatial variability were adjusted.Three wildly used spatial and temporal fusion methods were compared.The correlation coefficient r had a negative exponential relationship with ratio of land cover change pixels.The accuracy of ISTDFA method had a logarithmic relationship with the size of applied area. Because of low temporal resolution and cloud influence, many remote-sensing applications lack high spatial resolution remote-sensing data. To address this problem, this study introduced an improved spatial and temporal data fusion approach (ISTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the weaknesses of the spatial and temporal data fusion approach (STDFA) method, including the sensor difference and spatial variability. A weighted linear mixed model was used to adjust the spatial variability of surface reflectance. A linear-regression method was used to remove the influence of differences in sensor systems. This method was tested and validated in three study areas located in Xinjiang and Anhui province, China. The other two methods, the STDFA and the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), were also applied and compared in those three study areas. The results showed that the ISTDFA algorithm can generate daily synthetic Landsat imagery accurately, with correlation coefficient r equal to 0.9857 and root mean square error (RMSE) equal to 0.0195, which is superior to the STDFA method. The ISTDFA method had higher accuracy than ESTARFM in areas greater than 200 200 MODIS pixels while the ESTARFM method had higher accuracy than the ISTDFA method in small areas. The correlation coefficient r had a negative power relation with ratio of land-cover change pixels. A land-cover change of 20.25% pixels can lead to a reduced correlation coefficient r of 0.295 in the blue band. The accuracy of the ISTDFA method indicated a logarithmic relationship with the size of the applied area, so it is recommended for use in large-scale areas.

References

[1]
P. Gong, J. Wang, L. Yu, Y.C. Zhao, Y.Y. Zhao, L. Liang, Z.G. Niu, X.M. Huang, H.H. Fu, S. Liu, C.C. Li, X.Y. Li, W. Fu, C.X. Liu, Y. Xu, X.Y. Wang, Q. Cheng, L.Y. Hu, W.B. Yao, H. Zhang, P. Zhu, Z.Y. Zhao, H.Y. Zhang, Y.M. Zheng, L.Y. Ji, Y.W. Zhang, H. Chen, A. Yan, J.H. Guo, L. Yu, L. Wang, X.J. Liu, T.T. Shi, M.H. Zhu, Y.L. Chen, G.W. Yang, P. Tang, B. Xu, C. Giri, N. Clinton, Z.L. Zhu, J. Chen, J. Chen, Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34 (2013) 2607-2654.
[2]
K. Jia, S.L. Liang, N. Zhang, X.Q. Wei, X.F. Gu, X. Zhao, Y.J. Yao, X.H. Xie, Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data, ISPRS J. Photogramm. Remote Sens., 93 (2014) 49-55.
[3]
D.J. Fu, B.Z. Chen, H.F. Zhang, J. Wang, T.A. Black, B.D. Amiro, G. Bohrer, P. Bolstad, R. Coulter, A.F. Rahman, A. Dunn, J.H. McCaughey, T. Meyers, S. Verma, Estimating landscape net ecosystem exchange at high spatial-temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements, Remote Sens. Environ., 141 (2014) 90-104.
[4]
P.J. Du, S.C. Liu, J.S. Xia, Y.D. Zhao, Information fusion techniques for change detection from multi-temporal remote sensing images, Inf. Fusion, 14 (2013) 19-27.
[5]
K. Jennifer, Z.B. Su, T. Woldai, B. Maathuis, Estimation of spatial-temporal rainfall distribution using remote sensing techniques: a case study of Makanya catchment, Tanzania, Int. J. Appl. Earth Obs. Geoinf., 12 (2010) S90-S99.
[6]
H. Carrao, P. Goncalves, M. Caetano, Contribution of multispectral and multiternporal information from MODIS images to land cover classification, Remote Sens. Environ., 112 (2008) 986-997.
[7]
Y. Kim, J.S. Kimball, K. Didan, G.M. Henebry, Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion, Agric. For. Meteorol., 194 (2014) 132-143.
[8]
P.S. Thenkabail, M. Schull, H. Turral, Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data, Remote Sens. Environ., 95 (2005) 317-341.
[9]
X. Zhang, R. Sun, B. Zhang, Q.X. Tong, Land cover classification of the North China Plain using MODIS_EVI time series, ISPRS J. Photogramm. Remote Sens., 63 (2008) 476-484.
[10]
D.G. Leckie, Advances in remote-sensing technologies for forest surveys and management, Canadian J. for. Res.-Revue Canadienne De Recherche Forestiere, 20 (1990) 464-483.
[11]
F. Gao, J. Masek, M. Schwaller, F. Hall, On the blending of the Landsat and MODIS surface reflectance: predicting daily landsat surface reflectance, IEEE Trans. Geosci. Remote Sens., 44 (2006) 2207-2218.
[12]
D.P. Roy, J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, E. Lindquist, Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data, Remote Sens. Environ., 112 (2008) 3112-3130.
[13]
T. Hilker, M.A. Wulder, N.C. Coops, J. Linke, G. McDermid, J.G. Masek, F. Gao, J.C. White, A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS, Remote Sens. Environ., 113 (2009) 1613-1627.
[14]
H. Liu, Q.H. Weng, Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007, Remote Sens. Environ., 117 (2012) 57-71.
[15]
M. Schmidt, R. Lucas, P. Bunting, J. Verbesselt, J. Armston, Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia, Remote Sens. Environ., 158 (2015) 156-168.
[16]
J.J. Walker, K.M. de Beurs, R.H. Wynne, F. Gao, Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology, Remote Sens. Environ., 117 (2012) 381-393.
[17]
Q.H. Weng, P. Fu, F. Gao, Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data, Remote Sens. Environ., 145 (2014) 55-67.
[18]
X.L. Zhu, J. Chen, F. Gao, X.H. Chen, J.G. Masek, An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions, Remote Sens. Environ., 114 (2010) 2610-2623.
[19]
I.V. Emelyanova, T.R. McVicar, T.G. Van Niel, L.T. Li, A. van Dijk, Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection, Remote Sens. Environ., 133 (2013) 193-209.
[20]
L. Busetto, M. Meroni, R. Colombo, Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series, Remote Sens. Environ., 112 (2008) 118-131.
[21]
S. Cherchali, O. Amram, G. Flouzat, Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes, Int. J. Remote Sens., 21 (2000) 753-775.
[22]
R. Houborg, H. Soegaard, E. Boegh, Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data, Remote Sens. Environ., 106 (2007) 39-58.
[23]
O. Duran, M. Petrou, Subpixel temporal spectral imaging, Pattern Recognit. Lett., 48 (2014) 15-23.
[24]
F. Maselli, M.A. Gilabert, C. Conese, Integration of high and low resolution NDVI data for monitoring vegetation in Mediterranean environments, Remote Sens. Environ., 63 (1998) 208-218.
[25]
J.J. Settle, N.A. Drake, Linear mixing and the estimation of ground cover proportion, Int. J. Remote Sens., 14 (1993) 1159-1177.
[26]
B. Zhukov, D. Oertel, F. Lanzl, G. Reinhackel, Unmixing-based multisensor multiresolution image fusion, IEEE Trans. Geosci. Remote Sens., 37 (1999) 1212-1226.
[27]
F. Maselli, Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses, Remote Sens. Environ., 75 (2001) 29-38.
[28]
M.Q. Wu, Z. Niu, C.Y. Wang, C.Y. Wu, L. Wang, Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model, J. Appl. Remote Sens., 6 (2012).
[29]
M.Q. Wu, C.Y. Wu, W.J. Huang, Z. Niu, C.Y. Wang, High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model, Comput. Electron. Agric., 115 (2015) 1-11.
[30]
M.Q. Wu, H. Li, W.J. Huang, Z. Niu, C.Y. Wang, Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring, Environ. Sci.-Processes Impacts, 17 (2015) 1396-1404.
[31]
C.M. Gevaert, F.J. Garcia-Haro, A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion, Remote Sens. Environ., 156 (2015) 34-44.
[32]
M.Q. Wu, X.Y. Zhang, W.J. Huang, Z. Niu, C.Y. Wang, W. Li, P.Y. Hao, Reconstruction of daily 30¿m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring, Remote Sens., 7 (2015) 16293-16314.
[33]
M.Q. Wu, W.J. Huang, Z. Niu, C.Y. Wang, Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring, Int. J. Environ. Res. Public Health, 12 (2015) 9920-9937.

Cited By

View all
  • (2018)Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approachInformation Fusion10.1016/j.inffus.2017.06.00540:C(34-44)Online publication date: 1-Mar-2018
  1. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Information Fusion
        Information Fusion  Volume 31, Issue C
        September 2016
        146 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 September 2016

        Author Tags

        1. FROM-GLC
        2. Landsat
        3. MODIS
        4. Remote sensing
        5. Spatial and temporal data fusion

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 06 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2018)Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approachInformation Fusion10.1016/j.inffus.2017.06.00540:C(34-44)Online publication date: 1-Mar-2018

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media