Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A graph neural approach for group recommendation system based on pairwise preferences

Published: 02 July 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Pairwise preference information, which involves users expressing their preferences by comparing items, plays a crucial role in decision-making and has recently found application in recommendation systems. In this study, we introduce GcPp, a clustering algorithm that leverages pairwise preference data to generate recommendations for user groups. Initially, we construct individual graphs for each user based on their pairwise preferences and utilize a graph convolutional network to predict similarities between all pairs of graphs. These predicted similarity scores form the foundation of our research. We then construct a new graph where users are nodes and the edges are weighted according to the predicted similarities. Finally, we perform clustering on the graph’s nodes (users). By evaluating various metrics, we found that employing a similarity metric based on a convolutional neural network (SimGNN) with our proposed ground truth called Top-K yielded the highest accuracy. The proposed approach is specifically designed for group recommendation systems and holds significant potential for group decision-making problems. Code is available at https://github.com/RozaAbolghasemi/Group_Recommendation_Syatem_GcPp_clustering.

    Highlights

    For precise and fair group recommendations, one can use clusters of similar users as groups.
    The introduced GcPp is a Graph Clustering method based on Pairwise Preferences data.
    User similarity is determined by shared preferences, diverging from conventional feature vectors.
    Similarity prediction using both overall user preference (Top-K) and detailed pairwise preferences.

    References

    [1]
    Lin J., He M., Pan W., Ming Z., Collaborative filtering with sequential implicit feedback via learning users’ preferences over item-sets, Inform. Sci. 621 (2023) 136–155.
    [2]
    Zeng L., Guan J., Chen B., MSBPR: A multi-pairwise preference and similarity based Bayesian personalized ranking method for recommendation, Knowl.-Based Syst. 260 (2023).
    [3]
    Xu Y., Wang E., Yang Y., Chang Y., A unified collaborative representation learning for neural-network based recommender systems, IEEE Trans. Knowl. Data Eng. 34 (11) (2021) 5126–5139.
    [4]
    Amigó E., Deldjoo Y., Mizzaro S., Bellogín A., A unifying and general account of fairness measurement in recommender systems, Inf. Process. Manage. 60 (1) (2023).
    [5]
    Walek B., Fajmon P., A hybrid recommender system for an online store using a fuzzy expert system, Expert Syst. Appl. 212 (2023).
    [6]
    Shen X., Jiang H., Liu D., Yang K., Deng F., Lui J.C., Liu J., Dustdar S., Luo J., PupilRec: Leveraging pupil morphology for recommending on smartphones, IEEE Internet Things J. 9 (17) (2022) 15538–15553.
    [7]
    Chen X., Zhang Y., Tsang I.W., Pan Y., Su J., Toward equivalent transformation of user preferences in cross domain recommendation, ACM Trans. Inf. Syst. 41 (1) (2023) 1–31.
    [8]
    Liu W., Zheng X., Su J., Zheng L., Chen C., Hu M., Contrastive proxy kernel stein path alignment for cross-domain cold-start recommendation, IEEE Trans. Knowl. Data Eng. (2023).
    [9]
    Jain A., Murty M., Flynn P., Data clustering: a review, ACM computing survey, Journal 31 (3) (1999).
    [10]
    Abolghasemi R., Khadka R., Lind P.G., Engelstad P., Viedma E.H., Yazidi A., Predicting missing pairwise preferences from similarity features in group decision making, Knowl.-Based Syst. 256 (2022).
    [11]
    Yazidi A., Ivanovska M., Zennaro F.M., Lind P.G., Viedma E.H., A new decision making model based on rank centrality for GDM with fuzzy preference relations, European J. Oper. Res. 297 (3) (2022) 1030–1041.
    [12]
    Abolghasemi R., Engelstad P., Herrera-Viedma E., Yazidi A., A personality-aware group recommendation system based on pairwise preferences, Inform. Sci. 595 (2022) 1–17.
    [13]
    Sanfeliu A., Fu K.-S., A distance measure between attributed relational graphs for pattern recognition, IEEE Trans. Syst. Man Cybern. (1983) 353–362.
    [14]
    Gazdar A., Hidri L., A new similarity measure for collaborative filtering based recommender systems, Knowl.-Based Syst. 188 (2020).
    [15]
    Patra B.K., Launonen R., Ollikainen V., Nandi S., A new similarity measure using bhattacharyya coefficient for collaborative filtering in sparse data, Knowl.-Based Syst. 82 (2015) 163–177.
    [16]
    Mahara T., et al., A new similarity measure based on mean measure of divergence for collaborative filtering in sparse environment, Procedia Comput. Sci. 89 (2016) 450–456.
    [17]
    Jones N., Brun A., Boyer A., Hamad A., An exploratory work in using comparisons instead of ratings, in: E-Commerce and Web Technologies - 12th International Conference, in: Lecture Notes in Business Information Processing, vol. 85, Springer, 2011, pp. 184–195,.
    [18]
    L. Blédaité, F. Ricci, Pairwise preferences elicitation and exploitation for conversational collaborative filtering, in: Proceedings of the 26th ACM Conference on Hypertext & Social Media, 2015, pp. 231–236.
    [19]
    S. Kalloori, T. Li, F. Ricci, Item recommendation by combining relative and absolute feedback data, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 933–936.
    [20]
    S. Kalloori, F. Ricci, M. Tkalcic, Pairwise preferences based matrix factorization and nearest neighbor recommendation techniques, in: Proceedings of the 10th ACM Conference on Recommender Systems, 2016, pp. 143–146.
    [21]
    Rendle S., Freudenthaler C., Gantner Z., Schmidt-Thieme L., BPR: Bayesian personalized ranking from implicit feedback, 2012, arXiv preprint arXiv:1205.2618.
    [22]
    R. Yu, Y. Zhang, Y. Ye, L. Wu, C. Wang, Q. Liu, E. Chen, Multiple pairwise ranking with implicit feedback, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 1727–1730.
    [23]
    Sieranoja S., Fränti P., Adapting k-means for graph clustering, Knowl. Inf. Syst. 64 (1) (2022) 115–142.
    [24]
    Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, E. Zhu, Deep graph clustering via dual correlation reduction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 7603–7611.
    [25]
    Liao H., Hu J., Li T., Du S., Peng B., Deep linear graph attention model for attributed graph clustering, Knowl.-Based Syst. 246 (2022).
    [26]
    Guo L., Dai Q., Graph clustering via variational graph embedding, Pattern Recognit. 122 (2022).
    [27]
    Liu L., Kang Z., Ruan J., He X., Multilayer graph contrastive clustering network, Inform. Sci. 613 (2022) 256–267.
    [28]
    Hu D., Feng D., Xie Y., EGC: A novel event-oriented graph clustering framework for social media text, Inf. Process. Manage. 59 (6) (2022).
    [29]
    Morente-Molinera J.A., Aguilar S.R., González-Crespo R., Herrera-Viedma E., Using clustering methods to deal with high number of alternatives on group decision making, Procedia Comput. Sci. 162 (2019) 316–323.
    [30]
    Ding R.-X., Palomares I., Wang X., Yang G.-R., Liu B., Dong Y., Herrera-Viedma E., Herrera F., Large-scale decision-making: Characterization, taxonomy, challenges and future directions from an artificial intelligence and applications perspective, Inf. Fusion 59 (2020) 84–102.
    [31]
    Tang M., Liao H., Herrera-Viedma E., Chen C.P., Pedrycz W., A dynamic adaptive subgroup-to-subgroup compatibility-based conflict detection and resolution model for multicriteria large-scale group decision making, IEEE Trans. Cybern. 51 (10) (2020) 4784–4795.
    [32]
    Shang Y., Finite-time cluster average consensus for networks via distributed iterations, Int. J. Control Autom. Syst. 15 (2017) 933–938.
    [33]
    Liu P., Zhang K., Wang P., Wang F., A clustering- and maximum consensus-based model for social network large-scale group decision making with linguistic distribution, Inform. Sci. 602 (2022) 269–297.
    [34]
    Yao S., Gu M., An influence network-based consensus model for large-scale group decision making with linguistic information, Int. J. Comput. Intell. Syst. 15 (1) (2022),.
    [35]
    Jin F., Liu J., Zhou L., Martínez L., Consensus-based linguistic distribution large-scale group decision making using statistical inference and regret theory, Group Decis. Negot. 30 (4) (2021) 1–33,.
    [36]
    Saarinen J., A large-scale group decision-making model with no consensus threshold based on social network analysis, Inform. Sci. 612 (2022) 361–383,.
    [37]
    Liao H., Li X., Tang M., How to process local and global consensus? A large-scale group decision making model based on social network analysis with probabilistic linguistic information, Inform. Sci. 579 (2021) 368–387,.
    [38]
    Zhong X., Xu X., Chen X., A clustering and fusion method for large group decision making with double information and heterogeneous experts, Soft Comput. (2022) 1–13.
    [39]
    Chen J., Li H., Zhang X., Zhang F., Wang S., Wei K., Ji J., SR-HetGNN: session-based recommendation with heterogeneous graph neural network, Knowl. Inf. Syst. (2023) 1–24.
    [40]
    Liu X., Li X., Cao Y., Zhang F., Jin X., Chen J., Mandari: Multi-modal temporal knowledge graph-aware sub-graph embedding for next-POI recommendation, in: 2023 IEEE International Conference on Multimedia and Expo, ICME, IEEE, 2023, pp. 1529–1534.
    [41]
    J. Chen, Y. Cao, F. Zhang, P. Sun, K. Wei, Sequential intention-aware recommender based on user interaction graph, in: Proceedings of the 2022 International Conference on Multimedia Retrieval, 2022, pp. 118–126.
    [42]
    Hsu C.-W., Chen C.-T., Huang S.-H., Adaptive adversarial contrastive learning for cross-domain recommendation, ACM Trans. Knowl. Discov. Data 18 (3) (2023) 1–34.
    [43]
    Fu Z., Niu X., Maher M.L., Deep learning models for serendipity recommendations: A survey and new perspectives, ACM Comput. Surv. (2023).
    [44]
    Han D., Huang Y., Liu J., Liao K., Lin K., LSAB: User behavioral pattern modeling in sequential recommendation by learning self-attention bias, ACM Trans. Knowl. Discov. Data 18 (3) (2024) 1–20.
    [45]
    Yannam V.R., Kumar J., Babu K.S., Sahoo B., Improving group recommendation using deep collaborative filtering approach, Int. J. Inf. Technol. 15 (3) (2023) 1489–1497.
    [46]
    Lalitha T., Sreeja P., Recommendation system based on machine learning and deep learning in varied perspectives: a systematic review, in: Information and Communication Technology for Competitive Strategies (ICTCS 2020) Intelligent Strategies for ICT, Springer, 2021, pp. 419–432.
    [47]
    Shrivastava R., Sisodia D.S., Nagwani N.K., Deep neural network-based multi-stakeholder recommendation system exploiting multi-criteria ratings for preference learning, Expert Syst. Appl. 213 (2023).
    [48]
    Liao W.-H., Lin Y.-T., Lin C.-Y., Kuai S.-C., A group recommendation system for movies using deep learning, in: 2023 International Conference on Consumer Electronics-Taiwan, ICCE-Taiwan, IEEE, 2023, pp. 61–62.
    [49]
    Wu Y., Liu Q., Chen R., Li C., Peng Z., A group recommendation system of network document resource based on knowledge graph and LSTM in edge computing, Secur. Commun. Netw. 2020 (2020) 1–11.
    [50]
    Ait Hammou B., Ait Lahcen A., Mouline S., A distributed group recommendation system based on extreme gradient boosting and big data technologies, Appl. Intell. 49 (2019) 4128–4149.
    [51]
    Ali-Yari S., Neissani Samani N., Jelokhani Nayarki M.R., Uncertainty modeling of a group tourism recommendation system based on pearson similarity criteria, Bayesian network and self-organizing map clustering algorithm, Eng. J. Geosp. Inf. Technol. 8 (1) (2020) 39–61.
    [52]
    Seo Y.-D., Kim Y.-G., Lee E., Kim H., Group recommender system based on genre preference focusing on reducing the clustering cost, Expert Syst. Appl. 183 (2021).
    [53]
    Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, W. Wang, Simgnn: A neural network approach to fast graph similarity computation, in: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019, pp. 384–392.
    [54]
    Pavan M., Pelillo M., Dominant sets and pairwise clustering, IEEE Trans. Pattern Anal. Mach. Intell. 29 (1) (2006) 167–172.
    [55]
    H. Hung, B. Kröse, Detecting f-formations as dominant sets, in: Proceedings of the 13th International Conference on Multimodal Interfaces, 2011, pp. 231–238.
    [56]
    Yazidi A., Pinto-Orellana M.A., Hammer H., Mirtaheri P., Herrera-Viedma E., Solving sensor identification problem without knowledge of the ground truth using replicator dynamics, IEEE Trans. Cybern. 52 (1) (2020) 16–24.
    [57]
    Taylor P.D., Jonker L.B., Evolutionary stable strategies and game dynamics, Math. Biosci. 40 (1–2) (1978) 145–156.
    [58]
    Mequanint E.Z., Alemu L.T., Pelillo M., Dominant sets for constrained image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. (2018).
    [59]
    Tesfaye Y.T., Zemene E., Prati A., Pelillo M., Shah M., Multi-target tracking in multiple non-overlapping cameras using fast-constrained dominant sets, Int. J. Comput. Vis. (2019) 1–18.
    [60]
    Pelillo M., Torsello A., Payoff-monotonic game dynamics and the maximum clique problem, Neural Comput. 18 (5) (2006) 1215–1258.
    [61]
    Avrachenkov K., Borkar V.S., Metastability in stochastic replicator dynamics, Dynam. Games Appl. (2018) 1–25.
    [62]
    Barfuss W., Donges J.F., Kurths J., Deterministic limit of temporal difference reinforcement learning for stochastic games, Phys. Rev. E 99 (4) (2019).
    [63]
    Wang Q., He N., Chen X., Replicator dynamics for public goods game with resource allocation in large populations, Appl. Math. Comput. 328 (2018) 162–170.
    [64]
    Felfernig A., Boratto L., Stettinger M., Tkalčič M., et al., Group Recommender Systems: An Introduction, Springer, 2018.
    [65]
    E. Abbasnejad, S. Sanner, E.V. Bonilla, P. Poupart, Learning community-based preferences via dirichlet process mixtures of gaussian processes, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1213–1219.
    [66]
    C.-N. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommendation lists through topic diversification, in: Proceedings of the 14th International Conference on World Wide Web, 2005, pp. 22–32.
    [67]
    Jain A.K., Dubes R.C., Algorithms for Clustering Data, Prentice-Hall, Inc., 1988.
    [68]
    Boratto L., Carta S., Fenu G., Discovery and representation of the preferences of automatically detected groups: Exploiting the link between group modeling and clustering, Future Gener. Comput. Syst. 64 (2016) 165–174.
    [69]
    Z. Wang, Q. Xu, K. Ma, Y. Jiang, X. Cao, Q. Huang, Adversarial preference learning with pairwise comparisons, in: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 656–664.
    [70]
    Cao B., Zhao J., Lv Z., Yang P., Diversified personalized recommendation optimization based on mobile data, IEEE Trans. Intell. Transp. Syst. 22 (4) (2020) 2133–2139.
    [71]
    Xu J., Guo K., Zhang X., Sun P.Z., Left gaze bias between LHT and RHT: a recommendation strategy to mitigate human errors in left-and right-hand driving, IEEE Trans. Intell. Veh. (2023).
    [72]
    Peng Y., Zhao Y., Hu J., On the role of community structure in evolution of opinion formation: A new bounded confidence opinion dynamics, Inform. Sci. 621 (2023) 672–690.
    [73]
    Dong J., Hu J., Zhao Y., Peng Y., Opinion formation analysis for expressed and private opinions (EPOs) models: Reasoning private opinions from behaviors in group decision-making systems, Expert Syst. Appl. 236 (2024).

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Information Fusion
    Information Fusion  Volume 107, Issue C
    Jul 2024
    522 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 02 July 2024

    Author Tags

    1. Graph clustering
    2. Pairwise preferences
    3. Recommendation systems
    4. Group decision making
    5. Group recommendation systems

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media