Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MMSR: : Symbolic regression is a multi-modal information fusion task

Published: 01 February 2025 Publication History

Abstract

Mathematical formulas are the crystallization of human wisdom in exploring the laws of nature for thousands of years. Describing the complex laws of nature with a concise mathematical formula is a constant pursuit of scientists and a great challenge for artificial intelligence. This field is called symbolic regression (SR). Symbolic regression was originally formulated as a combinatorial optimization problem, and Genetic Programming (GP) and Reinforcement Learning algorithms were used to solve it. However, GP is sensitive to hyperparameters, and these two types of algorithms are inefficient. To solve this problem, researchers treat the mapping from data to expressions as a translation problem. And the corresponding large-scale pre-trained model is introduced. However, the data and expression skeletons do not have very clear word correspondences as the two languages do. Instead, they are more like two modalities (e.g., image and text). Therefore, in this paper, we proposed MMSR. The SR problem is solved as a pure multi-modal problem, and contrastive learning is also introduced in the training process for modal alignment to facilitate later modal feature fusion. It is worth noting that to better promote the modal feature fusion, we adopt the strategy of training contrastive learning loss and other losses at the same time, which only needs one-step training, instead of training contrastive learning loss first and then training other losses. Because our experiments prove training together can make the feature extraction module and feature fusion module wearing-in better. Experimental results show that compared with multiple large-scale pre-training baselines, MMSR achieves the most advanced results on multiple mainstream datasets including SRBench. Our code is open source at https://github.com/1716757342/MMSR.

Highlights

Propose a new multi-modal-based approach for symbolic regression.
Achieve an effective modality alignment mechanism utilizing contrastive learning.
Design a novel joint training strategy based on multi-loss function.
Our code is open source at https://github.com/1716757342/MMSR.

References

[1]
Wang Y., Wagner N., Rondinelli J.M., Symbolic regression in materials science, MRS Commun. 9 (3) (2019) 793––805.
[2]
Udrescu S.-M., Tegmark M., AI feynman: A physics-inspired method for symbolic regression, Sci. Adv. 6 (16) (2020) eaay2631,.
[3]
Udrescu S.-M., Tan A., Feng J., Neto O., Wu T., Tegmark M., AI feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, Advances in Neural Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 4860–4871.
[4]
Schmidt M., Lipson H., Distilling free-form natural laws from experimental data, Science 324 (5923) (2009) 81–85,. arXiv:https://www.science.org/doi/pdf/10.1126/science.1165893, URL https://www.science.org/doi/abs/10.1126/science.1165893.
[5]
Gustafson S., Burke E.K., Krasnogor N., On improving genetic programming for symbolic regression, 2005 IEEE Congress on Evolutionary Computation, vol. 1, IEEE, 2005, pp. 912–919.
[6]
Searson D.P., Leahy D.E., Willis M.J., GPTIPS: an open source genetic programming toolbox for multigene symbolic regression, Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1, Citeseer, 2010, pp. 77–80.
[7]
Haider C., de França F.O., Burlacu B., Kronberger G., Shape-constrained multi-objective genetic programming for symbolic regression, Appl. Soft Comput. 132 (2023).
[8]
Mundhenk T., Landajuela M., Glatt R., Santiago C.P., Petersen B.K., et al., Symbolic regression via deep reinforcement learning enhanced genetic programming seeding, Adv. Neural Inf. Process. Syst. 34 (2021) 24912–24923.
[9]
B. He, Q. Lu, Q. Yang, J. Luo, Z. Wang, Taylor genetic programming for symbolic regression, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2022, pp. 946–954.
[10]
Uy N.Q., Hoai N.X., O’Neill M., McKay R.I., Galván-López E., Semantically-based crossover in genetic programming: application to real-valued symbolic regression, Genet. Program. Evolvable Mach. 12 (2011) 91–119.
[11]
Jain M., Saihjpal V., Singh N., Singh S.B., An overview of variants and advancements of PSO algorithm, Appl. Sci. 12 (17) (2022) 8392.
[12]
Petersen B.K., Deep symbolic regression: Recovering mathematical expressions from data via policy gradients, 2019, CoRR abs/1912.04871, arXiv:1912.04871, URL http://arxiv.org/abs/1912.04871.
[13]
Alec R., Karthik N., Tim S., Ilya S., Improving Language Understanding by Generative Pre-Training, OpenAI, 2018.
[14]
Kim S., Lu P.Y., Mukherjee S., Gilbert M., Jing L., Čeperić V., Soljačić M., Integration of neural network-based symbolic regression in deep learning for scientific discovery, IEEE Trans. Neural Netw. Learn. Syst. 32 (9) (2021) 4166–4177,.
[15]
Mundhenk T.N., Landajuela M., Glatt R., Santiago C.P., Faissol D.M., Petersen B.K., Symbolic regression via neural-guided genetic programming population seeding, 2021, CoRR abs/2111.00053, arXiv:2111.00053, URL https://arxiv.org/abs/2111.00053.
[16]
La Cava W., Orzechowski P., Burlacu B., de França F.O., Virgolin M., Jin Y., Kommenda M., Moore J.H., Contemporary symbolic regression methods and their relative performance, 2021, arXiv preprint arXiv:2107.14351.
[17]
Li Y., Li W., Yu L., Wu M., Liu J., Li W., Hao M., Wei S., Deng Y., MetaSymNet: A dynamic symbolic regression network capable of evolving into arbitrary formulations, 2023, arXiv preprint arXiv:2311.07326.
[18]
Valipour V., You B., Panju M., Ghodsi A., SymbolicGPT: A generative transformer model for symbolic regression, 2021, CoRR abs/2106.14131, arXiv:2106.14131, URL https://arxiv.org/abs/2106.14131.
[19]
Luca B., Tommaso B., Alexander N., Aurelien L., Giambattista P., Neural symbolic regression that scales, in: Proceedings of the 38th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 936–945.
[20]
Vastl M., Kulhánek J., Kubalík J., Derner E., Babuska R., SymFormer: End-to-end symbolic regression using transformer-based architecture, 2022,. CoRR abs/2205.15764, arXiv:2205.15764, URL https://doi.org/10.48550/arXiv.2205.15764.
[21]
Kumar A., Vembu S., Menon A.K., Elkan C., Beam search algorithms for multilabel learning, Mach. Learn. 92 (2013) 65–89.
[22]
Liu D.C., Nocedal J., On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1–3) (1989) 503–528.
[23]
Lee J., Lee Y., Kim J., Kosiorek A., Choi S., Teh Y.W., Set transformer: A framework for attention-based permutation-invariant neural networks, in: Proceedings of the 36th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 3744–3753. URL https://proceedings.mlr.press/v97/lee19d.html.
[24]
Chuang C.-Y., Robinson J., Lin Y.-C., Torralba A., Jegelka S., Debiased contrastive learning, Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 8765–8775.
[25]
Shojaee P., Meidani K., Barati Farimani A., Reddy C., Transformer-based planning for symbolic regression, Adv. Neural Inf. Process. Syst. 36 (2024).
[26]
Radford A., Kim J.W., Hallacy C., Ramesh A., Goh G., Agarwal S., Sastry G., Askell A., Mishkin P., Clark J., et al., Learning transferable visual models from natural language supervision, in: International Conference on Machine Learning, PMLR, 2021, pp. 8748–8763.
[27]
Jia C., Yang Y., Xia Y., Chen Y.-T., Parekh Z., Pham H., Le Q., Sung Y.-H., Li Z., Duerig T., Scaling up visual and vision-language representation learning with noisy text supervision, in: International Conference on Machine Learning, PMLR, 2021, pp. 4904–4916.
[28]
K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
[29]
Chen T., Kornblith S., Norouzi M., Hinton G., A simple framework for contrastive learning of visual representations, International Conference on Machine Learning, PMLR, 2020, pp. 1597–1607.
[30]
Li J., Zhou P., Xiong C., Hoi S.C., Prototypical contrastive learning of unsupervised representations, 2020, arXiv preprint arXiv:2005.04966.
[31]
Li J., Xiong C., Hoi S.C., Mopro: Webly supervised learning with momentum prototypes, 2020, arXiv preprint arXiv:2009.07995.
[32]
Kim W., Son B., Kim I., Vilt: Vision-and-language transformer without convolution or region supervision, in: International Conference on Machine Learning, PMLR, 2021, pp. 5583–5594.
[33]
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C.L. Zitnick, D. Parikh, Vqa: Visual question answering, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2425–2433.
[34]
Wang Z., Yu J., Yu A.W., Dai Z., Tsvetkov Y., Cao Y., Simvlm: Simple visual language model pretraining with weak supervision, 2021, arXiv preprint arXiv:2108.10904.
[35]
Wang P., Yang A., Men R., Lin J., Bai S., Li Z., Ma J., Zhou C., Zhou J., Yang H., Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework, in: International Conference on Machine Learning, PMLR, 2022, pp. 23318–23340.
[36]
Piergiovanni A., Li W., Kuo W., Saffar M., Bertsch F., Angelova A., Answer-me: Multi-task open-vocabulary visual question answering, 2022, arXiv preprint arXiv:2205.00949.
[37]
A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach, D. Kiela, Flava: A foundational language and vision alignment model, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15638–15650.
[38]
Li J., Selvaraju R., Gotmare A., Joty S., Xiong C., Hoi S.C.H., Align before fuse: Vision and language representation learning with momentum distillation, Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 9694–9705.
[39]
Li J., Li D., Xiong C., Hoi S., Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation, in: International Conference on Machine Learning, PMLR, 2022, pp. 12888–12900.
[40]
Chen X., Djolonga J., Padlewski P., Mustafa B., Changpinyo S., Wu J., Ruiz C.R., Goodman S., Wang X., Tay Y., et al., PaLI-X: On scaling up a multilingual vision and language model, 2023, arXiv preprint arXiv:2305.18565.
[41]
Liu H., Li C., Wu Q., Lee Y.J., Visual instruction tuning, Advances in Neural Information Processing Systems, vol. 36, 2024.
[42]
Yu J., Wang Z., Vasudevan V., Yeung L., Seyedhosseini M., Wu Y., Coca: Contrastive captioners are image-text foundation models, 2022, arXiv, arXiv preprint arXiv:2205.01917.
[43]
Wang W., Bao H., Dong L., Bjorck J., Peng Z., Liu Q., Aggarwal K., Mohammed O.K., Singhal S., Som S., et al., Image as a foreign language: Beit pretraining for all vision and vision-language tasks, 2022, arXiv preprint arXiv:2208.10442.
[44]
Liu H., Li C., Wu Q., Lee Y.J., Visual instruction tuning, Advances in Neural Information Processing Systems, vol. 36, 2024.
[45]
Chang Y., Wang X., Wang J., Wu Y., Yang L., Zhu K., Chen H., Yi X., Wang C., Wang Y., et al., A survey on evaluation of large language models, ACM Trans. Intell. Syst. Technol. (2023).
[46]
Zhao W.X., Zhou K., Li J., Tang T., Wang X., Hou Y., Min Y., Zhang B., Zhang J., Dong Z., et al., A survey of large language models, 2023, arXiv preprint arXiv:2303.18223.
[47]
Touvron H., Lavril T., Izacard G., Martinet X., Lachaux M.-A., Lacroix T., Rozière B., Goyal N., Hambro E., Azhar F., et al., Llama: Open and efficient foundation language models, 2023, arXiv preprint arXiv:2302.13971.
[48]
Zeng A., Liu X., Du Z., Wang Z., Lai H., Ding M., Yang Z., Xu Y., Zheng W., Xia X., et al., Glm-130b: An open bilingual pre-trained model, 2022, arXiv preprint arXiv:2210.02414.
[49]
Ouyang L., Wu J., Jiang X., Almeida D., Wainwright C., Mishkin P., Zhang C., Agarwal S., Slama K., Ray A., et al., Training language models to follow instructions with human feedback, Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 27730–27744.
[50]
Arnaldo I., Krawiec K., O’Reilly U.-M., Multiple regression genetic programming, in: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Association for Computing Machinery, New York, NY, USA, 2014, pp. 879–886,.
[51]
McConaghy T., FFX: Fast, scalable, deterministic symbolic regression technology, Genetic Programming Theory and Practice IX, Springer, New York, NY, 2011, pp. 235–260,.
[52]
Nguyen S., Zhang M., Tan K.C., Surrogate-assisted genetic programming with simplified models for automated design of dispatching rules, IEEE Trans. Cybern. 47 (9) (2017) 2951–2965,.
[53]
Zhang F., Mei Y., Nguyen S., Zhang M., Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling, IEEE Trans. Cybern. 51 (4) (2021) 1797–1811,.
[54]
Y. Xu, Y. Liu, H. Sun, Reinforcement Symbolic Regression Machine.
[55]
Tibshirani R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1) (1996) 267–288,.
[56]
Kamienny P.-A., d’Ascoli S., Lample G., Charton F., End-to-end symbolic regression with transformers, Adv. Neural Inf. Process. Syst. 35 (2022) 10269–10281.
[57]
W. Li, W. Li, L. Sun, M. Wu, L. Yu, J. Liu, Y. Li, S. Tian, Transformer-based model for symbolic regression via joint supervised learning, in: The Eleventh International Conference on Learning Representations, 2022.
[58]
Landajuela M., Lee C.S., Yang J., Glatt R., Santiago C.P., Aravena I., Mundhenk T., Mulcahy G., Petersen B.K., A unified framework for deep symbolic regression, Adv. Neural Inf. Process. Syst. 35 (2022) 33985–33998.
[59]
Liu J., Li W., Yu L., Wu M., Sun L., Li W., Li Y., SNR: Symbolic network-based rectifiable learning framework for symbolic regression, Neural Netw. 165 (2023) 1021–1034.
[60]
Holt S., Qian Z., van der Schaar M., Deep generative symbolic regression, 2023, arXiv preprint arXiv:2401.00282.
[61]
Browne C.B., Powley E., Whitehouse D., Lucas S.M., Cowling P.I., Rohlfshagen P., Tavener S., Perez D., Samothrakis S., Colton S., A survey of monte carlo tree search methods, IEEE Trans. Comput. Intell. AI games 4 (1) (2012) 1–43.
[62]
Li Y., Li W., Yu L., Wu M., Liu J., Li W., Hao M., Wei S., Deng Y., Discovering mathematical formulas from data via GPT-guided Monte Carlo tree search, 2024, arXiv preprint arXiv:2401.14424.
[63]
Meidani K., Shojaee P., Reddy C.K., Farimani A.B., SNIP: Bridging mathematical symbolic and numeric realms with unified pre-training, 2023, arXiv preprint arXiv:2310.02227.
[64]
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R., Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929–1958.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Information Fusion
Information Fusion  Volume 114, Issue C
Feb 2025
1192 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 February 2025

Author Tags

  1. Symbolic regression
  2. Multi-modal
  3. Information fusion
  4. Contrastive learning
  5. Modal alignment

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media