Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Accelerating particle swarm optimization using crisscross search

Published: 01 February 2016 Publication History

Abstract

This paper introduces a novel crisscross search particle swarm optimizer called CSPSO.The CSPSO algorithm has significant superiority over most of the other PSO variants in terms of solution accuracy and convergence rate.The swarm in CSPSO is directly represented by a population of pbests, which are renewed by the modified PSO search as well as the crisscross search in sequence at each generation.The CSO as an catalytic agent can accelerate the particles to converge to the global optima.The horizontal crossover uses a cross-border search mechanism to enhance the global search ability greatly.The vertical crossover can facilitate the stagnant dimensions to escape out of the local minima. Although the particle swarm optimization (PSO) algorithm has been widely used to solve many real world problems, it is likely to suffer entrapment in local optima when addressing multimodal optimization problems. In this paper, we report a novel hybrid optimization algorithm called crisscross search particle swarm optimization (CSPSO), which is different from PSO and its variants in that each particle is directly represented by pbest. The population of particles in CSPSO is updated by modified PSO as well as crisscross search optimization (CSO) in sequence within each iteration. CSO is incorporated as an evolutionary catalytic agent that has powerful capability of searching for pbests of high quality, therefore accelerating the global convergence of PSO. CSO enhances PSO by two search operators, namely horizontal crossover and vertical crossover. The horizontal crossover further enhances PSO's global convergence ability while the vertical crossover can enhance swarm diversity. Several benchmark functions are used to test the feasibility and efficiency of the proposed algorithm. The experimental results show that CSPSO outperforms other state-of-the-art PSO variants significantly in terms of global search ability and convergence speed on almost all of the benchmark functions tested.

References

[1]
M. Abramowitz, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables, Dover Publications, 1974.
[2]
R.K. Agrawal, N.G. Bawane, Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery, Appl. Soft Comput. J., 28 (2015) 217-225.
[3]
R. Ahila, V. Sadasivam, K. Manimala, An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances, Appl. Soft Comput. J., 32 (2015) 23-37.
[4]
P.S. Andrews, An investigation into mutation operators for particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2006, pp. 1044-1051.
[5]
P.J. Angeline, Using selection to improve particle swarm optimization, in: Proceedings of IEEE International Conference on Computer, 1998, pp. 84-89.
[6]
H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach, IEEE Trans. Smart Grid., 3 (2012) 1935-1944.
[7]
K. Chan, T.S. Dillon, E. Chang, An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems, IEEE Trans. Ind. Electron., 60 (2013) 4714-4725.
[8]
H. Chen, Y. Zhu, K. Hu, T. Ku, Global optimization based on hierarchical convolutions model, in: Proceedings of IEEE Congress on Evolutionary Computation, 2008, pp. 1497-1504.
[9]
P. Chen, Two-level hierarchical approach to unit commitment using expert system and elite PSO, IEEE Trans. Power Syst, 27 (2012) 780-789.
[10]
X. Chen, Y. Li, A modified PSO structure resulting in high exploration ability with convergence guaranteed, IEEE Trans. Syst. Man Cybern., 37 (2007) 1271-1289.
[11]
G. Chen, L. Liu, P. Song, Y. Du, Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems, Energy Convers. Manage., 86 (2014) 548-560.
[12]
W. Chen, J. Zhang, Y. Lin, N. Chen, Z. Zhan, H. Chung, Y. Li, Y. Shi, Particle swarm optimization with an aging leader and challengers, IEEE Trans. Evol. Comput., 17 (2013) 241-258.
[13]
L. Chuang, S. Tsai, C. Yang, Catfish particle swarm optimization, in: Proceedings of IEEE Swarm Intelligence Symposium, 2008, pp. 1-5.
[14]
L. Chuang, S. Tsai, C. Yang, Chaotic catfish particle swarm optimization for solving global numerical optimization problems, Int. J. Appl. Math. Comput. Sci., 217 (2011) 6900-6916.
[15]
M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6 (2002) 58-73.
[16]
G. Das, P.K. Pattnaik, S.K. Padhy, Artificial neural network trained by particle swarm optimization for non-linear channel equalization, Expert Syst. Appl., 41 (2014) 3491-3496.
[17]
J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7 (2006) 1-30.
[18]
J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011) 3-18.
[19]
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39-43.
[20]
R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proceedings of IEEE Congress on Evolutionary Computation, 2001, pp. 81-86.
[21]
W. Elloumi, H. El Abed, A. Abraham, A.M. Alimi, A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP, Appl. Soft Comput., 25 (2014) 234-241.
[22]
A. Engelbrecht, Heterogeneous particle swarm optimization, in: Proceedings of the Seventh International Conference on Swarm Intelligence, 2010, pp. 191-202.
[23]
M. Eslami, H. Shareef, M. Khajehzadeh, A. Mohamed, A survey of the state of the art in particle swarm optimization, Res. J. Appl. Sci. Eng. Technol., 4 (2012) 1181-1197.
[24]
N.V. George, G. Panda, A particle-swarm-optimization-based decentralized nonlinear active noise control system, IEEE Trans. Instrum. Meas., 61 (2012) 3378-3386.
[25]
M. Gomez-Gonzalez, A. López, F. Jurado, Corrigendum to "Optimization of distributed generation systems using a new discrete PSO and OPF", Electr. Power Syst. Res., 121 (2015) 379.
[26]
H. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in: Proceedings of IEEE Swarm Intelligence Symposium, 2003, pp. 72-79.
[27]
F. Hu, F. Wu, Diploid hybrid particle swarm optimization with differential evolution for open vehicle routing problem, in: Proceedings of the Eighth World Congress on Automatic Control and Artificial Intelligence, 2010, pp. 2692-2697.
[28]
X. Hu, R.C. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1677-1681.
[29]
K. Ishaque, Z. Salam, M. Amjad, S. Mekhilef, An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation, IEEE Trans. Power Electron., 27 (2012) 3627-3638.
[30]
N. Jin, Y. Rahmat-Samii, Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics, IEEE Trans. Ant. Prop., 58 (2010) 3786-3794.
[31]
C.F. Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Trans. Syst. Man Cybern. B Cybern., 34 (2004) 997-1006.
[32]
S. Kachroudi, M. Grossard, N. Abroug, Predictive driving guidance of full electric vehicles using particle swarm optimization, IEEE Trans. Vehicle Technol., 61 (2012) 3909-3919.
[33]
J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proceedings of IEEE Congress on Evolutionary Computation, 1999, pp. 1931-1938.
[34]
J. Kennedy, Bare bones particle swarms, in: Proceedings of IEEE Swarm Intelligence Symposium, 2003, pp. 80-87.
[35]
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of International Conference on Neural Networks, 1995, pp. 1942-1948.
[36]
J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, 2002, pp. 1671-1676.
[37]
J. Kennedy, R. Mendes, Neighborhood topologies in fully-in-formed and best-of-neighborhood particle swarms, in: Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, 2003, pp. 45-50.
[38]
R. Kuo, L. Lin, Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering, Decis. Support Syst., 49 (2010) 451-462.
[39]
J. Liang, A. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particles swarm optimization for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10 (2006) 281-295.
[40]
J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in: Proceedings of IEEE Swarm Intelligence Symposium, 2005, pp. 124-129.
[41]
L.W. Hong, M.I.N. Ashidi, Two-layer particle swarm optimization with intelligent division of labor, Eng. Appl. Artif. Intel., 26 (2013) 2327-2348.
[42]
Y. Liu, Z. Qin, Z. Shi, J. Lu, Center particle swarm optimization, Neurocomputing, 70 (2007) 672-679.
[43]
Z. Liu, W. Sun, J. Zeng, A new short-term load forecasting method of power system based on EEMD and SS-PSO, Neural Comput. Appl., 24 (2014) 973-983.
[44]
M. Lovbjerg, T.K. Rasmussen, T. Krink, Hybrid particle swarm optimizer with breeding and subpopulations, in: Proceedings of International Conference on Genetic and Evolutionary, 2001, pp. 469-476.
[45]
R. Martínez-Soto, O. Castillo, L.T. Aguilar, Type-1 and Type-2 fuzzy logic controller design using a hybrid PSO-GA optimization method, Inf. Sci., 285 (2014) 35-49.
[46]
R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8 (2004) 204-210.
[47]
A. Meng, Y. Chen, H. Yin, S. Chen, Crisscross optimization algorithm and its application, Knowl. Based Syst., 67 (2014) 218-229.
[48]
A.S. Mohais, C. Ward, C. Posthoff, Randomized directed neighborhoods with edge migration in particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2004, pp. 548-555.
[49]
M.A. Montes de Oca, T. Stutzle, M. Birattari, M. Dorigo, Frankenstein's PSO: a composite particle swarm optimization algorithm, IEEE Trans. Evol. Comput., 13 (2009) 1120-1132.
[50]
V.F. Nepomuceno, P. Andries, A. Engelbrecht, Self-adaptive heterogeneous PSO for real-parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 20-23.
[51]
M. Ramezani, M. Haghifam, C. Singh, H. Seifi, M.P. Moghaddam, Determination of capacity benefit margin in multiarea power systems using particle swarm optimization, IEEE Trans. Power Syst., 2 (2009) 631-641.
[52]
A. Ratnaweera, S. Halgamuge, H. Waston, Self-organizing hierarchical particle optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8 (2004) 240-255.
[53]
N. Sa-ngawong, I. Ngamroo, Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control, Renew. Energy, 74 (2015) 555-567.
[54]
Y. Shang, Y. Qiu, A note on the extended Rosenbrock function, Evol. Comput., 14 (2006) 119-126.
[55]
P.S. Shelokar, P. Siarry, V.K. Jayaraman, B.D. Kulkarni, Particle swarm and ant colony algorithms hybridized for improved continuous optimization, Int. J. Appl. Math. Comput., 188 (2007) 129-142.
[56]
Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE Congress on Evolutionary Computation, 1998, pp. 69-73.
[57]
Y. Shi, R.C. Eberhart, Parameters selections in particle swarm optimization, in: Proceedings of IEEE International Conference on Evolutionary Programming, 1998, pp. 591-600.
[58]
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 1999, pp. 1945-1950.
[59]
Y. Shi, R.C. Eberhart, Fuzzy adaptive particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2001, pp. 101-106.
[60]
P.H. Silva, R.M.S. Cruz, A.G.D. Assuncao, Blending PSO and ANN for optimal design of FSS filters with Koch Island patch elements, IEEE Trans. Magn., 46 (2010) 3010-3013.
[61]
P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in: Proceedings of IEEE Congress on Evolutionary Computation, 1999, pp. 1958-1962.
[62]
P.N. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, in: Proceedings of Technical Report, Nanyang Technological University, Singapore, May 2005.
[63]
Y. Tang, Z. Wang, J. Fang, Feedback learning particle swarm optimization, Appl. Soft Comput., 11 (2011) 4713-4725.
[64]
N.R. Tayebi, F.M. Nejad, M. Mola, Comparison between GA and PSO in analyzing pavement management activities, J. Transp. Eng., 40 (2014) 99-104.
[65]
F. Valdez, P. Melin, O. Castillo, Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms, Inf. Sci., 270 (2014) 143-153.
[66]
F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004) 225-239.
[67]
R. Wai, J. Lee, K. Chuang, Real-time PID control strategy for maglev transportation system via particle swarm optimization, IEEE Trans. Ind. Electron., 58 (2011) 629-646.
[68]
H. Wang, H. Sun, C. Li, S. Rahnamayan, J.S. Pan, Diversity enhanced particle swarm optimization with neighborhood search, Inf. Sci., 223 (2013) 119-135.
[69]
H. Wang, Z.J. Wu, S. Rahnamayan, Y. Liu, M. Ventresca, Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011) 4699-4714.
[70]
J. Wang, F. Yang, Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm, IET Renew. Power Generat., 7 (2013) 443-448.
[71]
M. Xi, J. Sun, W. Xu, An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position, Appl. Math. Comput., 205 (2008) 751-759.
[72]
X. Xie, P. Wu, Research on the optimal combination of ACO parameters based on PSO, in: Proceedings of the Second International Conference on Networking and Digital Society, 2010, pp. 94-97.
[73]
B. Xin, J. Chen, J. Zhang, H. Fang, Z. Peng, Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy, IEEE Trans. Syst. Man Cybern. C Appl. Rev., 42 (2012) 744-767.
[74]
T. Xiong, Y. Bao, Z. Hu, R. Chiong, Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms, Inf. Sci., 305 (2015) 77-92.
[75]
X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3 (1999) 82-102.
[76]
S.H. Yeung, W.S Chan, K.T. Ng, K.F. Man, Computational optimization algorithms for antennas and RF/microwave circuit designs: an overview, IEEE Trans. Ind. Inf., 8 (2012) 216-227.
[77]
Z. Zhan, J. Zhang, Y. Li, H. Chung, Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. B Cybern., 39 (2009) 1362-1381.
[78]
Z. Zhan, J. Zhang, Y. Li, Y. Shi, Orthogonal learning particle swarm optimization, IEEE Trans. Evol. Comput., 15 (2011) 832-847.
[79]
Y. Zhong, Y. Xiang, Y. Jiang, Z.J. Hong, J. Shao, A hybrid dynamic multi-swarm PSO algorithm with Nelder-Mead simplex search method, Comput. Inf. Syst., 9 (2013) 7741-7748.
[80]
D. Zhou, X. Gao, G. Liu, C. Mei, D. Jiang, Y. Liu, Randomization in particle swarm optimization for global search ability, Expert Syst. Appl., 38 (2011) 15356-15364.
[81]
T. Zhuang, Q. Li, Guo, X. Wang, A two-stage particle swarm optimizer, in: Proceedings of IEEE Congress on Computational Intelligence, 2008, pp. 557-563.

Cited By

View all
  • (2022)A new approach for mechanical parameter inversion analysis of roller compacted concrete dams using modified PSO and RBFNNCluster Computing10.1007/s10586-022-03715-y25:6(4633-4652)Online publication date: 1-Dec-2022
  • (2022)An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEngineering with Computers10.1007/s00366-021-01431-638:Suppl 4(2797-2831)Online publication date: 1-Oct-2022
  • (2021)Enhanced Comprehensive Learning Particle Swarm Optimization with Dimensional Independent and Adaptive ParametersComputational Intelligence and Neuroscience10.1155/2021/66285642021Online publication date: 1-Jan-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Information Sciences: an International Journal
Information Sciences: an International Journal  Volume 329, Issue C
February 2016
1001 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 February 2016

Author Tags

  1. Crisscross search optimization (CSO)
  2. Global search
  3. Horizontal crossover
  4. Particle swarm optimization (PSO)
  5. Vertical crossover

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2022)A new approach for mechanical parameter inversion analysis of roller compacted concrete dams using modified PSO and RBFNNCluster Computing10.1007/s10586-022-03715-y25:6(4633-4652)Online publication date: 1-Dec-2022
  • (2022)An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEngineering with Computers10.1007/s00366-021-01431-638:Suppl 4(2797-2831)Online publication date: 1-Oct-2022
  • (2021)Enhanced Comprehensive Learning Particle Swarm Optimization with Dimensional Independent and Adaptive ParametersComputational Intelligence and Neuroscience10.1155/2021/66285642021Online publication date: 1-Jan-2021
  • (2020)A Novel Social Opinion Dynamics Guided Particle Swarm Optimization2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)10.1109/SMC42975.2020.9282990(2520-2527)Online publication date: 11-Oct-2020
  • (2020)A Performance Class-Based Particle Swarm OptimizerAdvances in Swarm Intelligence10.1007/978-3-030-53956-6_16(176-188)Online publication date: 14-Jul-2020
  • (2019)Differential mutation and novel social learning particle swarm optimization algorithmInformation Sciences: an International Journal10.1016/j.ins.2018.12.030480:C(109-129)Online publication date: 1-Apr-2019
  • (2019)Efficient and merged biogeography-based optimization algorithm for global optimization problemsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3113-123:12(4483-4502)Online publication date: 1-Jun-2019
  • (2018)Improved Particle Swarm Optimization Algorithm Based on Last-Eliminated Principle and Enhanced Information SharingComputational Intelligence and Neuroscience10.1155/2018/50256722018Online publication date: 5-Dec-2018
  • (2018)Hybrid non-parametric particle swarm optimization and its stability analysisExpert Systems with Applications: An International Journal10.1016/j.eswa.2017.09.01292:C(256-275)Online publication date: 1-Feb-2018
  • (2018)Particle swarm optimization algorithmSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2474-622:2(387-408)Online publication date: 1-Jan-2018
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media