Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Differential evolution with multi-population based ensemble of mutation strategies

Published: 01 February 2016 Publication History

Abstract

A multi-population based approach is proposed to realize the adapted ensemble of multiple strategies of differential evolution.The control parameters of each mutation strategy are adapted independently.Extensive experiments are conducted to test the performance of multi-population ensemble DE (MPEDE). Differential evolution (DE) is among the most efficient evolutionary algorithms (EAs) for global optimization and now widely applied to solve diverse real-world applications. As the most appropriate configuration of DE to efficiently solve different optimization problems can be significantly different, an appropriate combination of multiple strategies into one DE variant attracts increasing attention recently. In this study, we propose a multi-population based approach to realize an ensemble of multiple strategies, thereby resulting in a new DE variant named multi-population ensemble DE (MPEDE) which simultaneously consists of three mutation strategies, i.e., "current-to-pbest/1" and "current-to-rand/1" and "rand/1". There are three equally sized smaller indicator subpopulations and one much larger reward subpopulation. Each constituent mutation strategy has one indicator subpopulation. After every certain number of generations, the current best performing mutation strategy will be determined according to the ratios between fitness improvements and consumed function evaluations. Then the reward subpopulation will be allocated to the determined best performing mutation strategy dynamically. As a result, better mutation strategies obtain more computational resources in an adaptive manner during the evolution. The control parameters of each mutation strategy are adapted independently as well. Extensive experiments on the suit of CEC 2005 benchmark functions and comprehensive comparisons with several other efficient DE variants show the competitive performance of the proposed MPEDE (Matlab codes of MPEDE are available from http://guohuawunudt.gotoip2.com/publications.html).

References

[1]
H.A. Abbass, The self-adaptive pareto differential evolution algorithm, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, 2002, pp. 831-836.
[2]
A. Al-Ani, A. Alsukker, R.N. Khushaba, Feature subset selection using differential evolution and a wheel based search strategy, Swarm Evol. Comput., 9 (2013) 15-26.
[3]
M.Z. Ali, N.H. Awad, P.N. Suganthan, Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization, Appl. Soft Comput., 33 (2015) 304-327.
[4]
M.Z. Ali, M. Pant, A. Abraham, Improved differential evolution algorithm with decentralisation of population, Int. J. Bio-Insp. Comput., 3 (2011) 17-30.
[5]
S. Biswas, S. Kundu, S. Das, An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution, IEEE Trans.Cybern., 44 (2014) 1726-1737.
[6]
J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10 (2006) 646-657.
[7]
H. Cai, C. Chung, K. Wong, Application of differential evolution algorithm for transient stability constrained optimal power flow, IEEE Trans. Power Syst., 23 (2008) 719-728.
[8]
U.K. Chakraborthy, S. Das, A. Konar, Differential evolution with local neighborhood, in: Proceedings of Congress on Evolutionary Computation, IEEE Press, Vancouver, BC, Canada, 2006, pp. 2042-2049.
[9]
K.T. Chaturvedi, M. Pandit, L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE Trans. Power Syst., 23 (2008) 1079-1087.
[10]
J. Cheng, G. Zhang, F. Neri, Enhancing distributed differential evolution with multicultural migration for global numerical optimization, Inform. Sci., 247 (2013) 72-93.
[11]
I. Ciornei, E. Kyriakides, A GA-API solution for the economic dispatch of generation in power system operation, IEEE Trans. Power Syst., 27 (2012) 233-242.
[12]
S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a neighborhood-based mutation operator, IEEE Trans. Evol. Comput., 13 (2009) 526-553.
[13]
S. Das, A. Konar, U.K. Chakraborty, Two improved differential evolution schemes for faster global search, in: Conference on Genetic and Evolutionary Computation, 2005, pp. 991-998.
[14]
S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15 (2011) 4-31.
[15]
R. Dash, P.K. Dash, R. Bisoi, A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction, Swarm Evol. Comput. (2014) 25-42.
[16]
R. Gämperle, S.D. Müller, P. Koumoutsakos, A parameter study for differential evolution, WSEAS Press, Interlaken, Switzerland, 2002.
[17]
W. Gao, G.G. Yen, S. Liu, A cluster-based differential evolution with self-adaptive strategy for multimodal optimization, IEEE Trans. Cybernet., 44 (2014) 1314-1327.
[18]
W. Gong, Z. Cai, Differential evolution with ranking-based mutation operators, IEEE Trans. Cybernet., 43 (2013) 2066-2081.
[19]
W. Gong, Z. Cai, C.X. Ling, C. Li, Enhanced differential evolution with adaptive strategies for numerical optimization, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet., 41 (2011) 397-413.
[20]
W. Gong, A. Fialho, Z. Cai, H. Li, Adaptive strategy selection in differential evolution for numerical optimization: an empirical study, Inform. Sci., 181 (2011) 5364-5386.
[21]
Gong, W., Zhou, A., Cai, Z., A multi-operator search strategy based on cheap surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput.
[22]
H. Guo, Y. Li, J. Li, H. Sun, D. Wang, X. Chen, Differential evolution improved with self-adaptive control parameters based on simulated annealing, Swarm Evol. Comput. (2014) 52-67.
[23]
Guo, S., Yang, C., Hsu, P., Tsai, J., Improving differential evolution with successful-parent-selecting framework, IEEE Trans. Evol. Comput.
[24]
A. Iorio, X. Li, Solving rotated multi-objective optimization problems using differential evolution, in: Austr. Conf. Artif. Intellig., 2004, pp. 861-872.
[25]
G. Jia, Y. Wang, Z. Cai, Y. Jin, An improved (µ+λ)-constrained differential evolution for constrained optimization, Inform. Sci., 222 (2013) 302-322.
[26]
C.-C. Kuo, A novel coding scheme for practical economic dispatch by modified particle swarm approach, IEEE Trans. Power Syst., 23 (2008) 1825-1835.
[27]
J. Lampinen, I. Zelinka, On stagnation of the differential evolution algorithm, in: Sixth International Mendel Conference on Soft Computing, 2000, pp. 76-83.
[28]
Y.-l. Li, J. Zhang, A new differential evolution algorithm with dynamic population partition and local restart, in: Gecco-2011: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, 2011, pp. 1085-1092.
[29]
J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, IEEE, 2005, pp. 124-129.
[30]
J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Comput., 9 (2005) 448-462.
[31]
R. Mallipeddi, P.N. Suganthan, Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies, in: Swarm, Evolutionary, and Memetic Computing, 2010, pp. 71-78.
[32]
R. Mallipeddi, P.N. Suganthan, Ensemble of constraint handling techniques, IEEE Trans. Evol. Comput., 14 (2010) 561-579.
[33]
R. Mallipeddi, P.N. Suganthan, Q.-K. Pan, M.F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl. Soft Comput., 11 (2011) 1679-1696.
[34]
E. Mezura-Montes, C.A.C. Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm Evol. Comput., 1 (2011) 173-194.
[35]
P. Novoa-Hernandez, C. Cruz Corona, D.A. Pelta, Self-adaptive, multipopulation differential evolution in dynamic environments, Soft Comput., 17 (2013) 1861-1881.
[36]
M.G.H. Omran, A. Salman, A.P. Engelbrecht, Self-adaptive differential evolution, 2005.
[37]
N. Pholdee, S. Bureerat, Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses, Inform. Sci., 223 (2013) 136-152.
[38]
K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, Berlin, 2005.
[39]
A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13 (2009) 398-417.
[40]
S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential evolution, IEEE Trans. Evol. Comput., 12 (2008) 64-79.
[41]
J. Ronkkonen, S. Kukkonen, K.V. Price, Real-parameter optimization with differential evolution, in: IEEE Congress of Evolutionary Computation (CEC 2005), 2005, pp. 506-513.
[42]
R.A. Sarker, S.M. Elsayed, T. Ray, Differential evolution with dynamic parameters selection for optimization problems, IEEE Trans. Evol. Comput., 18 (2014) 689-707.
[43]
S. Sayah, A. Hamouda, A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems, Appl. Soft Comput., 13 (2013) 1608-1619.
[44]
A.I. Selvakumar, K. Thanushkodi, A new particle swarm optimization solution to nonconvex economic dispatch problems, IEEE Trans. Power Syst., 22 (2007) 42-51.
[45]
R. Shang, Y. Wang, J. Wang, L. Jiao, S. Wang, L. Qi, A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem, Inform. Sci., 277 (2014) 609-642.
[46]
R. Storn, On the usage of differential evolution for function optimization, in: Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS), 1996, pp. 519-523.
[47]
R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optimiz., 11 (1997) 341-359.
[48]
R. Storn, K. Price, Differential evolution: a simple evolution strategy for fast optimization, Dr. Dobbs J., 22 (1997) 18-24.
[49]
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, KanGAL Report, 2005005, 2005.
[50]
R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution, in: 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp. 71-78.
[51]
Tang, L., Dong, Y., Liu, J., Differential evolution with an individual-dependent mechanism, IEEE Trans. Evol. Comput.
[52]
J. Wang, J. Liao, Y. Zhou, Y. Cai, Differential evolution enhanced with multiobjective sorting-based mutation operators, IEEE Trans. Cybernet., 44 (2014) 2792-2805.
[53]
R. Wang, P.J. Fleming, R.C. Purshouse, General framework for localised multi-objective evolutionary algorithms, Inform. Sci., 258 (2014) 29-53.
[54]
R. Wang, R.C. Purshouse, P.J. Fleming, Preference-inspired coevolutionary algorithms for many-objective optimization, IEEE Trans. Evol. Comput., 17 (2013) 474-494.
[55]
R. Wang, R.C. Purshouse, P.J. Fleming, Preference-inspired co-evolutionary algorithms using weight vectors, Eur. J. Oper. Res., 243 (2015) 423-441.
[56]
Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput., 15 (2011) 55-66.
[57]
Y. Wang, H.-X. Li, T. Huang, L. Li, Differential evolution based on covariance matrix learning and bimodal distribution parameter setting, Appl. Soft Comput., 18 (2014) 232-247.
[58]
Wu, G., Pedrycz, W., Suganthand, P.N., Mallipeddie, R., A variable reduction strategy for evolutionary algorithms handling equality constraints, Appl. Soft Comput.
[59]
G. Wu, D. Qiu, Y. Yu, W. Pedrycz, M. Ma, H. Li, Superior solution guided particle swarm optimization combined with local search techniques, Exp. Syst. Appl., 41 (2014) 7536-7548.
[60]
G.Y. Yang, Z.Y. Dong, K.P. Wong, A modified differential evolution algorithm with fitness sharing for power system planning, IEEE Trans. Power Syst., 23 (2008) 514-522.
[61]
M. Yang, C. Li, Z. Cai, J. Guan, Differential evolution with auto-enhanced population diversity, IEEE Trans. Cybernet., 45 (2015) 302-315.
[62]
X.-S. Yang, S.S. Sadat Hosseini, A.H. Gandomi, Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect, Appl. Soft Comput., 12 (2012) 1180-1186.
[63]
W.-J. Yu, M. Shen, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, Y. Lin, O. Liu, J. Zhang, Differential evolution with two-level parameter adaptation, IEEE Trans. Cybernet., 44 (2014) 1080-1099.
[64]
W.-j. Yu, J. Zhang, Multi-population differential evolution with adaptive parameter control for global optimization, in: Gecco-2011: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, 2011, pp. 1093-1098.
[65]
D. Zaharie, Control of population diversity and adaptation in differential evolution algorithms, in: Proceedings of the 9th International Conference on Soft Computing, 2003, pp. 41-46.
[66]
D. Zaharie, Influence of crossover on the behavior of differential evolution algorithms, Appl. Soft Comput., 9 (2009) 1126-1138.
[67]
J. Zhang, S. A. C., JADE: adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13 (2009) 945-958.
[68]
J. Zhang, X. Ding, A multi-swarm self-adaptive and cooperative particle swarm optimization, Eng. Appl. Artif. Intellig., 24 (2011) 958-967.
[69]
S.-Z. Zhao, S. P. N., Q. Zhang, Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, IEEE Trans. Evol. Comput., 16 (2012) 442-446.
[70]
S.-Z. Zhao, P.N. Suganthan, Q.-K. Pan, M. Fatih Tasgetiren, Dynamic multi-swarm particle swarm optimizer with harmony search, Exp. Syst. Appl., 38 (2011) 3735-3742.
[71]
S.Z. Zhao, P.N. Suganthan, Empirical investigations into the exponential crossover of differential evolutions, Swarm Evol. Comput., 9 (2013) 27-36.
[72]
Y.-J. Zheng, X.-L. Xu, H.-F. Ling, S.-Y. Chen, A hybrid fireworks optimization method with differential evolution operators, Neurocomputing, 148 (2015) 75-82.
[73]
W. Zhu, Y. Tang, J.-a. Fang, W. Zhang, Adaptive population tuning scheme for differential evolution, Inform. Sci., 223 (2013) 164-191.

Cited By

View all
  1. Differential evolution with multi-population based ensemble of mutation strategies

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Information Sciences: an International Journal
      Information Sciences: an International Journal  Volume 329, Issue C
      February 2016
      1001 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 February 2016

      Author Tags

      1. Differential evolution
      2. Ensemble of mutation strategies
      3. Evolutionary algorithm
      4. Multi-population
      5. Numerical optimization

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 08 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)A triple population adaptive differential evolutionInformation Sciences: an International Journal10.1016/j.ins.2024.121401688:COnline publication date: 1-Jan-2025
      • (2024)Bi-Population-Enhanced Cooperative Differential Evolution for Constrained Large-Scale Optimization ProblemsIEEE Transactions on Evolutionary Computation10.1109/TEVC.2023.332500428:6(1620-1632)Online publication date: 1-Dec-2024
      • (2024)FATANeurocomputing10.1016/j.neucom.2024.128289607:COnline publication date: 28-Nov-2024
      • (2024)An adaptive archive differential evolution with non-linear population size reduction and selective pressureInformation Sciences: an International Journal10.1016/j.ins.2024.121273682:COnline publication date: 1-Nov-2024
      • (2024)Differential evolution algorithm with a complementary mutation strategy and data Fusion-Based parameter adaptationInformation Sciences: an International Journal10.1016/j.ins.2024.120522668:COnline publication date: 9-Jul-2024
      • (2024)An adaptive population size based Differential Evolution by mining historical population similarity for path planning of unmanned aerial vehiclesInformation Sciences: an International Journal10.1016/j.ins.2024.120432666:COnline publication date: 1-May-2024
      • (2024)Collaborative resource allocation-based differential evolution for solving numerical optimization problemsInformation Sciences: an International Journal10.1016/j.ins.2024.120104660:COnline publication date: 1-Mar-2024
      • (2024)An improved differential evolution with adaptive population allocation and mutation selectionExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.125130258:COnline publication date: 15-Dec-2024
      • (2024)Memetic discrete differential evolution with domain knowledge for blocking scheduling distributed flow shop with lot-streaming constraintsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.124874255:PDOnline publication date: 21-Nov-2024
      • (2024)Multi-strategy differential evolution algorithm based on adaptive hash clustering and its application in wireless sensor networksExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.123214246:COnline publication date: 15-Jul-2024
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media