Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Graph minimum linear arrangement by multilevel weighted edge contractions

Published: 01 July 2006 Publication History

Abstract

The minimum linear arrangement problem is widely used and studied in many practical and theoretical applications. In this paper we present a linear-time algorithm for the problem inspired by the algebraic multigrid approach which is based on weighted edge contraction rather than simple contraction. Our results turned out to be better than every known result in almost all cases, while the short running time of the algorithm enabled experiments with very large graphs.

References

[1]
{1} R. Bar-Yehuda, G. Even, J. Feldman, J. Naor, Computing an optimal orientation of a balanced decomposition tree for linear arrangement problems, J. Graph Algorithms Appl. 5 (4) (2001) 1-27.
[2]
{2} A. Brandt, S. McCormick, J. Rudge, Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations, Institute for Computational Studies, POB 1852, Fort Collins, Colorado, 1982.
[3]
{3} A. Brandt, S. McCormick, J. Rudge, Algebraic multigrid (AMG) for sparse matrix equations, in: D.J. Evans (Ed.), Sparsity and Its Applications, Cambridge University Press, Cambridge, 1984, pp. 257-284.
[4]
{4} A. Brandt, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput. 19 (1986) 23-56.
[5]
{5} A. Brandt, D. Ron, D. Amit, Multi-level approaches to discrete-state and stochastic problems, in: W. Hackbush, U. Trottenberg (Eds.), Multigrid Methods, II, Springer-Verlag, 1986, pp. 66-99.
[6]
{6} A. Brandt, Multiscale scientific computation: review 2001, in: T. Barth, R. Haimes, T. Chan (Eds.), Multiscale and Multiresolution Methods, Proceedings of the Yosemite Educational Symposium, October 2000, Springer-Verlag, 2001.
[7]
{7} A. Brandt, General highly accurate algebraic coarsening, Gauss Center Report WI/GC-13, May 1999; Electron. Trans. Numer. Anal. 10 (2000) 1-20.
[8]
{8} A. Brandt, D. Ron, Multigrid solvers and multilevel optimization strategies, in: J. Cong, J.R. Shinnerl (Eds.), Multilevel Optimization and VLSICAD, Kluwer, 2002.
[9]
{9} W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, second ed., SIAM, 2000.
[10]
{10} C.K. Cheng, Linear placement algorithms and applications to VLSI design, Networks 17 (1987) 439-464.
[11]
{11} J. Díaz, J. Petit, M. Serna, A survey on graph layout problems, ACM Comput. Surveys 34 (3) (2002) 313-356.
[12]
{12} J. Díaz, J. Petit, M. Serna, L. Trevisan, Approximating layout problems on random graphs, Discrete Math. 235 (1-3) (2001) 245-253.
[13]
{13} J. Díaz, M.D. Penrose, J. Petit, M.J. Serna, Approximating layout problems on random geometric graphs, J. Algorithms 39 (1) (2001) 78-116.
[14]
{14} M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) 237-267.
[15]
{15} L.H. Harper, Optimal assignments of numbers to vertices, J. SIAM 12 (1) (1964) 131-135.
[16]
{16} S. Horton, The optimal linear arrangement problem: algorithms and approximation, PhD Thesis, Georgia Institute of Technology, 1997.
[17]
{17} M. Juvan, B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Appl. Math. 36 (1992) 153-168.
[18]
{18} S. Kirkpatrick, Models of Disordered Systems, C. Castellani, et al. (Eds.), Lecture Notes in Phys., vol. 149, Springer-Verlag, Berlin, 1981.
[19]
{19} Y. Koren, D. Harel, A multi-scale algorithm for the linear arrangement problem, in: Proceedings of 28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'02), in: Lecture Notes in Comput. Sci., vol. 2573, Springer-Verlag, 2002, pp. 293-306.
[20]
{20} Y. Lai, K. Williams, A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs, J. Graph Theory 31 (1999) 75-94.
[21]
{21} K. Mehlhorn, S. Naher, LEDA--a Platform for Combinatorial and Geometric Computing, Cambridge University Press, 1999.
[22]
{22} J. Petit, Experiments on the minimum linear arrangement problem, ACM J. Experimental Algorithmics 8 (2003).
[23]
{23} J. Petit, Combining spectral sequencing and parallel simulated annealing for the MinLA problem, Parallel Process. Lett. 13 (1) (2003) 77-91.
[24]
{24} T. Poranen, A genetic hillclimbing algorithm for the optimal linear arrangement problem, http://www.cs.uta. fi/tp/optgen/, 2002.
[25]
{25} D. Ron, Development of fast numerical solvers for problems in optimization and statistical mechanics, PhD Thesis, The Weizmann Institute of Science, 1989.
[26]
{26} J. Ruge, K. Stüben, Algebraic multigrid, in: S.F. McCormick (Ed.), Multigrid Methods, SIAM, Philadelphia, 1987, pp. 73-130.
[27]
{27} I. Safro, The minimum linear arrangement problem, MSc Thesis, The Weizmann Institute of Science, http://www.wisdom.weizmann.ac.il/~safro/thesis.ps, 2002.
[28]
{28} F. Shahrokhi, O. Sykora, L.A. Szekly, I. Vrto, On bipartite drawings and the linear arrangement problem, in: Workshop on Algorithms and Data Structures, 1997.
[29]
{29} E. Sharon, A. Brandt, R. Basri, Fast multiscale image segmentation, in: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, I, 2000, pp. 70-77.
[30]
{30} K. Stüben, An introduction to algebraic multigrid, in: U. Trottenberg, C.W. Oosterlee, A. Schüller (Eds.), Multigrid, Academic Press, 2001, pp. 413-532, Appendix.
[31]
{31} K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281-309.

Cited By

View all
  • (2022)Partitioning Dense Graphs with Hardware AcceleratorsComputational Science – ICCS 202210.1007/978-3-031-08757-8_40(476-483)Online publication date: 21-Jun-2022
  • (2021)ELRUNAACM Journal of Experimental Algorithmics10.1145/345070326(1-32)Online publication date: 9-Jul-2021
  • (2021)Multilevel Combinatorial Optimization across Quantum ArchitecturesACM Transactions on Quantum Computing10.1145/34256072:1(1-29)Online publication date: 13-Feb-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Algorithms
Journal of Algorithms  Volume 60, Issue 1
July 2006
83 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 July 2006

Author Tags

  1. coarsening
  2. combinatorial optimization
  3. graphs
  4. interpolation
  5. minimum linear arrangement
  6. multilevel computations
  7. relaxation
  8. simulated annealing
  9. weighted aggregation
  10. weighted edge contractions

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Partitioning Dense Graphs with Hardware AcceleratorsComputational Science – ICCS 202210.1007/978-3-031-08757-8_40(476-483)Online publication date: 21-Jun-2022
  • (2021)ELRUNAACM Journal of Experimental Algorithmics10.1145/345070326(1-32)Online publication date: 9-Jul-2021
  • (2021)Multilevel Combinatorial Optimization across Quantum ArchitecturesACM Transactions on Quantum Computing10.1145/34256072:1(1-29)Online publication date: 13-Feb-2021
  • (2020)A Critical Survey of the Multilevel Method in Complex NetworksACM Computing Surveys10.1145/337934753:2(1-35)Online publication date: 17-Apr-2020
  • (2020)Revealing the political affinity of online entities through their Twitter followersInformation Processing and Management: an International Journal10.1016/j.ipm.2019.10217257:2Online publication date: 1-Mar-2020
  • (2020)Basic variable neighborhood search for the minimum sitting arrangement problemJournal of Heuristics10.1007/s10732-019-09432-x26:2(249-268)Online publication date: 1-Apr-2020
  • (2018)A multilevel bilinear programming algorithm for the vertex separator problemComputational Optimization and Applications10.1007/s10589-017-9945-269:1(189-223)Online publication date: 1-Jan-2018
  • (2017)New relationships for multi-neighborhood search for the minimum linear arrangement problemJournal of Discrete Algorithms10.1016/j.jda.2017.10.00346:C(16-24)Online publication date: 1-Sep-2017
  • (2015)Advanced Coarsening Schemes for Graph PartitioningACM Journal of Experimental Algorithmics10.1145/267033819(1-24)Online publication date: 7-Jan-2015
  • (2015)A Cache Hierarchy Aware Thread Mapping Methodology for GPGPUsIEEE Transactions on Computers10.1109/TC.2014.230817964:4(884-898)Online publication date: 9-Mar-2015
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media