Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal Hölder-Zygmund exponent of semi-regular refinable functions

Published: 01 March 2020 Publication History

Abstract

The regularity of refinable functions has been investigated deeply in the past 25 years using Fourier analysis, wavelet analysis, restricted and joint spectral radii techniques. However the shift-invariance of the underlying regular setting is crucial for these approaches. We propose an efficient method based on wavelet tight frame decomposition techniques for estimating Hölder-Zygmund regularity of univariate semi-regular refinable functions generated, e.g., by subdivision schemes defined on semi-regular meshes t = − h ℓ N ∪ { 0 } ∪ h r N, h ℓ, h r ∈ ( 0, ∞ ). To ensure the optimality of this method, we provide a new characterization of Hölder-Zygmund spaces based on suitable irregular wavelet tight frames. Furthermore, we present proper tools for computing the corresponding frame coefficients in the semi-regular setting. We also propose a new numerical approach for estimating the optimal Hölder-Zygmund exponent of refinable functions which is more efficient than the linear regression method. We illustrate our results with several examples of known and new semi-regular subdivision schemes with a potential use in blending curve design.

References

[1]
Beccari C.V., Casciola G., Romani L., Non-uniform interpolatory curve subdivision with edge parameters built upon compactly supported fundamental splines, BIT 51 (4) (2011) 781–808.
[2]
Beccari C., Casciola G., Romani L., Polynomial-based non-uniform interpolatory subdivision with features control, J. Comput. Appl. Math. 235 (16) (2011) 4754–4769.
[3]
Borup L., Gribonval R., Nielsen M., Tight wavelet frames in Lebesgue and Sobolev spaces, J. Funct. Spaces Appl. 2 (3) (2004) 227–252.
[4]
Buhmann M.D., Radial basis functions, in: Acta numerica, 2000, in: Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 1–38.
[5]
Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser-Verlag, Basel, 2003.
[6]
Chui C., An Introduction to Wavelets, Academic Press, London, 1992.
[7]
Chui C.K., He W., Stöckler J., Nonstationary tight wavelet frames. I. Bounded intervals, Appl. Comput. Harmon. Anal. 17 (2) (2004) 141–197.
[8]
Chui C.K., He W., Stöckler J., Nonstationary tight wavelet frames. II. Unbounded intervals, Appl. Comput. Harmon. Anal. 18 (1) (2005) 25–66.
[9]
Chui C., de Viles J., Wavelet Subdivision Methods: GEMS for Rendering Curves and Surfaces, CRC Press, 2011.
[10]
Cordero E., Gröchenig K., Localization of frames. II, Appl. Comput. Harmon. Anal. 17 (1) (2004) 29–47.
[11]
Daubechies I., Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, p. xx+357.
[12]
Daubechies I., Guskov I., Sweldens W., Regularity of irregular subdivision, Constr. Approx. 15 (3) (1999) 381–426.
[13]
Deslauriers G., Dubuc S., Symmetric iterative interpolation processes, Fractal Approximation, Constr. Approx. 5 (1) (1989) 49–68.
[14]
Fasshauer G.E., Meshfree approximation methods with matlab, Interdisciplinary Mathematical Sciences, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, p. xviii+500. With 1 CD-ROM (Windows, Macintosh and UNIX).
[15]
Feichtinger H.G., Voigtlaender F., From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces, in: Functional Analysis, Harmonic Analysis, and Image Processing: a Collection of Papers in Honor of Björn Jawerth, in: Contemp. Math., vol. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 185–216.
[16]
Frazier M., Jawerth B., Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (4) (1985) 777–799.
[17]
Frazier M., Jawerth B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1) (1990) 34–170.
[18]
Han B., Shen Z., Characterization of sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames, Israel J. Math. 172 (2009) 371–398.
[19]
Holschneider M., Tchamitchian P., Régularite locale de la fonction “non-différentiable” de Riemann, in: Les ondelettes en 1989 (Orsay, 1989), in: Lecture Notes in Math., vol. 1438, Springer, Berlin, 1990, pp. 102–124. 209–210.
[20]
Kunoth A., On the fast evaluation of integrals of refinable functions, in: Wavelets, Images, and Surface Fitting (Chamonix-Mont-Blanc, 1993), A K Peters, Wellesley, MA, 1994, pp. 327–334.
[21]
Lee B.-G., Lee Y.J., Yoon J., Stationary binary subdivision schemes using radial basis function interpolation, Adv. Comput. Math. 25 (1–3) (2006) 57–72.
[22]
Lee Y.J., Yoon J., Analysis of stationary subdivision schemes for curve design based on radial basis function interpolation, Appl. Math. Comput. 215 (11) (2010) 3851–3859.
[23]
Lemarié P.G., Meyer Y., Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1–2) (1986) 1–18.
[24]
Lounsbery J.M., Multiresolution analysis for surfaces of arbitrary topological type, (Ph.D. thesis) University of Washington, ProQuest LLC, Ann Arbor, MI, 1994.
[25]
Meyer Y., Wavelets and operators, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1992, p. xvi+224. Translated from the 1990 French original by D. H. Salinger.
[26]
Peters J., Reif U., Subdivision surfaces, Geometry and Computing, Springer-Verlag, Berlin, 2008, p. xvi+204. With introductory contributions by Nira Dyn and Malcolm Sabin.
[27]
Pilipović S., Rakić D.s., Vindas J., New classes of weighted Hölder-Zygmund spaces and the wavelet transform, J. Funct. Spaces Appl. (2012) Art. ID 815475, 18.
[28]
Villemoes L.F., Wavelet analysis of refinement equations, SIAM J. Math. Anal. 25 (5) (1994) 1433–1460.
[29]
A. Viscardi, Semi-regular interpolatory RBF-based subdivision schemes, Mendeley Data, 2018.
[30]
Viscardi A., Semi-regular Dubuc-Deslauriers wavelet tight frames, J. Comput. Appl. Math. 349 (2019) 548–562.
[31]
Warren J., Binary subdivision schemes for functions over irregular knot sequences, in: Mathematical Methods for Curves and Surfaces (Ulvik, 1994), Vanderbilt Univ. Press, Nashville, TN, 1995, pp. 543–562.
[32]
Warren J., Weimer H., Subdivision Methods for Geometric Design: A Constructive Approach, first ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

Index Terms

  1. Optimal Hölder-Zygmund exponent of semi-regular refinable functions
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Approximation Theory
          Journal of Approximation Theory  Volume 251, Issue C
          Mar 2020
          244 pages

          Publisher

          Academic Press, Inc.

          United States

          Publication History

          Published: 01 March 2020

          Author Tags

          1. 42C40
          2. 42C15
          3. 65D17

          Author Tags

          1. Wavelet tight frames
          2. Semi-regular refinement
          3. Dubuc-Deslauriers frames
          4. Hölder-Zygmund regularity

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 06 Oct 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media