Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions

Published: 01 April 2012 Publication History

Abstract

We introduce a robust and efficient method to simulate strongly coupled (monolithic) fluid/rigid-body interactions. We take a fractional step approach, where the intermediate state variables of the fluid and of the solid are solved independently, before their interactions are enforced via a projection step. The projection step produces a symmetric positive definite linear system that can be efficiently solved using the preconditioned conjugate gradient method. In particular, we show how one can use the standard preconditioner used in standard fluid simulations to precondition the linear system associated with the projection step of our fluid/solid algorithm. Overall, the computational time to solve the projection step of our fluid/solid algorithm is similar to the time needed to solve the standard fluid-only projection step. The monolithic treatment results in a stable projection step, i.e. the kinetic energy does not increase in the projection step. Numerical results indicate that the method is second-order accurate in the L^~-norm and demonstrate that its solutions agree quantitatively with experimental results.

References

[1]
Apte, S.V., Martin, M. and Patankar, N.A., A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comput. Phys. v228 i8. 2712-2738.
[2]
Aslam, T., A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. v193. 349-355.
[3]
Batty, C., Bertails, F. and Bridson, R., A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.). v26 i3.
[4]
Bell, J.B., Colella, P. and Glaz, H.M., A second order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. v85. 257-283.
[5]
Brown, D., Cortez, R. and Minion, M., Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. v168. 464-499.
[6]
Cate, A.T., Derksen, J.J., Portela, L.M., Harry, E.A. and Van, D.A., Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. v519. 233-271.
[7]
Chorin, A., A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. v2. 12-26.
[8]
Coquerelle, M. and Cottet, G., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. of Comput. Phys. v227 i21. 9121-9137.
[9]
Cottet, G.-H. and Koumoutsakos, P., Vortex Methods - Theory and Practice. 2000. Cambridge University Press, New York.
[10]
Farhat, C., Lesoinne, M. and Le Tallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Method Appl. Mech. Eng. v157 i1-2. 95-114.
[11]
Feng, Z. and Michaelides, E., A direct forcing method in the simulations of particulate flows. J. Comput. Phys. v202 i1. 20-51.
[12]
Garcia, M., Gutierrez, J. and Rueda, N., Fluid-structure coupling using lattice-Boltzmann and fixed-grid FEM. Finite Elements in Analysis and Design. v47 i8. 906-912.
[13]
Gibou, F. and Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. v202. 577-601.
[14]
Gibou, F., Fedkiw, R., Cheng, L.-T. and Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. v176. 205-227.
[15]
Golub, G. and Loan, C., Matrix Computations. 1989. The John Hopkins University Press.
[16]
Guermond, J.L. and Shen, J., On the error estimates for the rotational pressure-correction projection methods. Math. Comput. v73. 1719-1737.
[17]
Harlow, F. and Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. Fluids. v8. 2182-2189.
[18]
Kim, J. and Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. v59. 308-323.
[19]
McCorquodale, P., Colella, P., Grote, D. and Vay, J.-L., A node-centered local refinement algorithm for Poisson's equation in complex geometries. J. Comput. Phys. v201. 34-60.
[20]
Min, C. and Gibou, F., A second order accurate projection method for the incompressible Navier-Stokes equation on non-graded adaptive grids. J. Comput. Phys. v219. 912-929.
[21]
Min, C. and Gibou, F., A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. v225. 300-321.
[22]
Min, C. and Gibou, F., Robust second order accurate discretizations of the multi-dimensional heaviside and dirac delta functions. J. Comput. Phys. v227. 9686-9695.
[23]
Ng, Y., Chen, H., Min, C. and Gibou, F., Guidelines for poisson solvers on irregular domains with dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. v41. 300-320.
[24]
Ng, Y., Min, C. and Gibou, F., An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys. v228. 8807-8829.
[25]
Peskin, C., Flow patterns around heart valves: a numerical method. J. Comput. Phys. v10. 252-271.
[26]
Peskin, C., The immersed boundary method. Acta Numerica. v11. 479-517.
[27]
Purvis, J.W. and Burkhalter, J.E., Prediction of critical mach number for store configurations. AIAA J. v17. 1170-1177.
[28]
Robinson-Mosher, A., Schroeder, C. and Fedkiw, R., A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. v230. 1547-1566.
[29]
Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J. and Fedkiw, R., Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. v27 i46.
[30]
Saad, Y., Iterative Methods for Sparse Linear Systems. 1996. PWS Publishing, New York, NY.
[31]
Shortley, G.H. and Weller, R., Numerical solution of laplace's equation. J. Appl. Phys. v9. 334-348.
[32]
Smereka, P., The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. v211. 77-90.
[33]
Towers, J., Finite difference methods for approximating heaviside functions. J. Comput. Phys. v228. 3478-3489.
[34]
Trefethen, L. and Bau III, D., Numerical Linear Algebra. 1997. SIAM.
[35]
Wang, H., Chessa, J., Liu, W.K. and Belytschko, T., The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members. Int. J. Numer. Methods Eng. v74. 32-55.
[36]
Xiu, D. and Karniadakis, G., A semi-Lagrangian high-order method for Navier-Stokes equations. J. Comput. Phys. v172. 658-684.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 231, Issue 8
April, 2012
453 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 April 2012

Author Tags

  1. Fluid
  2. Interaction between fluid and solid
  3. Level-set method
  4. Navier-Stokes equations
  5. Rigid body
  6. Solid

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)High-Order Moment-Encoded Kinetic Simulation of Turbulent FlowsACM Transactions on Graphics10.1145/361834142:6(1-13)Online publication date: 5-Dec-2023
  • (2023)Fluid-Solid Coupling in Kinetic Two-Phase Flow SimulationACM Transactions on Graphics10.1145/359213842:4(1-14)Online publication date: 26-Jul-2023
  • (2021)Fast and versatile fluid-solid coupling for turbulent flow simulationACM Transactions on Graphics10.1145/3478513.348049340:6(1-18)Online publication date: 10-Dec-2021
  • (2020)Fast and scalable turbulent flow simulation with two-way couplingACM Transactions on Graphics10.1145/3386569.339240039:4(47:1-47:20)Online publication date: 12-Aug-2020
  • (2018)A Stable and Convergent Hodge Decomposition Method for Fluid---Solid InteractionJournal of Scientific Computing10.1007/s10915-017-0638-x76:2(727-758)Online publication date: 1-Aug-2018
  • (2018)Convergence Analysis in the Maximum Norm of the Numerical Gradient of the Shortley---Weller MethodJournal of Scientific Computing10.1007/s10915-017-0458-z74:2(631-639)Online publication date: 1-Feb-2018
  • (2017)A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodiesProceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation10.1145/3099564.3099572(1-11)Online publication date: 28-Jul-2017
  • (2017)Extended ALE Method for fluid-structure interaction problems with large structural displacementsJournal of Computational Physics10.1016/j.jcp.2016.11.043331:C(312-336)Online publication date: 15-Feb-2017
  • (2016)A stable fluid-structure-interaction solver for low-density rigid bodies using the immersed boundary projection methodJournal of Computational Physics10.5555/2869968.2870189305:C(300-318)Online publication date: 15-Jan-2016
  • (2016)Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body methodJournal of Computational Physics10.1016/j.jcp.2016.05.035321:C(571-592)Online publication date: 15-Sep-2016
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media