Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On the complexity of the storyplan problem

Published: 01 February 2024 Publication History
  • Get Citation Alerts
  • Abstract

    We study the problem of representing a graph as a storyplan, a recently introduced model for dynamic graph visualization. It is based on a sequence of frames, each showing a subset of vertices and a planar drawing of their induced subgraphs, where vertices appear and disappear over time. Namely, in the StoryPlan problem, we are given a graph and we want to decide whether there exists a total vertex appearance order for which a storyplan exists. We prove that the problem is NP-complete, and complement this hardness with two parameterized algorithms, one in the vertex cover number and one in the feedback edge set number of the input graph. We prove that partial 3-trees always admit a storyplan, which can be computed in linear time. Finally, we show that the problem remains NP-complete if the vertex appearance order is given and we have to choose how to draw the frames.

    References

    [1]
    C. Binucci, E. Di Giacomo, W.J. Lenhart, G. Liotta, F. Montecchiani, M. Nöllenburg, A. Symvonis, On the complexity of the storyplan problem, in: GD, in: Lecture Notes in Computer Science, vol. 13764, Springer, 2022, pp. 304–318.
    [2]
    N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory, Ser. B 35 (1) (1983) 39–61,.
    [3]
    E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani, I.G. Tollis, Techniques for edge stratification of complex graph drawings, J. Vis. Lang. Comput. 25 (4) (2014) 533–543,.
    [4]
    F. Beck, M. Burch, S. Diehl, D. Weiskopf, The state of the art in visualizing dynamic graphs, in: R. Borgo, R. Maciejewski, I. Viola (Eds.), EuroVis 2014, Eurographics Association, 2014,.
    [5]
    C. Binucci, U. Brandes, G. Di Battista, W. Didimo, M. Gaertler, P. Palladino, M. Patrignani, A. Symvonis, K.A. Zweig, Drawing trees in a streaming model, Inf. Process. Lett. 112 (11) (2012) 418–422,.
    [6]
    M. Borrazzo, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, Graph stories in small area, J. Graph Algorithms Appl. 24 (3) (2020) 269–292,.
    [7]
    G. Da Lozzo, I. Rutter, Planarity of streamed graphs, Theor. Comput. Sci. 799 (2019) 1–21,.
    [8]
    M. Skambath, T. Tantau, Offline drawing of dynamic trees: algorithmics and document integration, in: Y. Hu, M. Nöllenburg (Eds.), Graph Drawing and Network Visualization, in: LNCS, vol. 9801, GD'16, Springer, 2016, pp. 572–586,.
    [9]
    C. Vehlow, F. Beck, D. Weiskopf, Visualizing dynamic hierarchies in graph sequences, IEEE Trans. Vis. Comput. Graph. 22 (10) (2016) 2343–2357,.
    [10]
    G. Di Battista, W. Didimo, L. Grilli, F. Grosso, G. Ortali, M. Patrignani, A. Tappini, Small point-sets supporting graph stories, in: P. Angelini, R. von Hanxleden (Eds.), Graph Drawing and Network Visualization, GD 2022, Springer International Publishing, 2022, in press.
    [11]
    M. Schaefer, Toward a theory of planarity: Hanani-Tutte and planarity variants, J. Graph Algorithms Appl. 17 (4) (2013) 367–440,.
    [12]
    N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Inf. Process. Lett. 42 (6) (1992) 345–350,.
    [13]
    B. Monien, I.H. Sudborough, Min Cut is NP-complete for edge weighted trees, Theor. Comput. Sci. 58 (1988) 209–229,.
    [14]
    H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms 21 (2) (1996) 358–402,.
    [15]
    R. Impagliazzo, R. Paturi, On the complexity of k-SAT, J. Comput. Syst. Sci. 62 (2) (2001) 367–375,.
    [16]
    R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001) 512–530,.
    [17]
    T.J. Schaefer, The complexity of satisfiability problems, in: R.J. Lipton, W.A. Burkhard, W.J. Savitch, E.P. Friedman, A.V. Aho (Eds.), STOC 1978, ACM, 1978, pp. 216–226,.
    [18]
    J. Chen, I.A. Kanj, G. Xia, Improved upper bounds for vertex cover, Theor. Comput. Sci. 411 (40–42) (2010) 3736–3756,.
    [19]
    N. Robertson, P. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (3) (1986) 309–322,.
    [20]
    J. Matoušek, R. Thomas, Algorithms finding tree-decompositions of graphs, J. Algorithms 12 (1) (1991) 1–22,.
    [21]
    D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (2) (1976) 266–283,.
    [22]
    M. Chrobak, T. Payne, A linear-time algorithm for drawing a planar graph on a grid, Inf. Process. Lett. 54 (4) (1995) 241–246,.
    [23]
    P. Angelini, G. Da Lozzo, D. Neuwirth, Advancements on SEFE and partitioned book embedding problems, Theor. Comput. Sci. 575 (2015) 71–89,.
    [24]
    W. Didimo, G. Liotta, F. Montecchiani, A survey on graph drawing beyond planarity, ACM Comput. Surv. 52 (1) (2019) 4:1–4:37,.
    [25]
    S. Hong, T. Tokuyama (Eds.), Beyond Planar Graphs, Communications of NII Shonan Meetings, Springer, 2020,.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of Computer and System Sciences
    Journal of Computer and System Sciences  Volume 139, Issue C
    Feb 2024
    108 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 February 2024

    Author Tags

    1. Dynamic graph drawing
    2. NP-hardness
    3. Parameterized complexity

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media