Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The cyclic sieving phenomenon

Published: 01 October 2004 Publication History

Abstract

The cyclic sieving phenomenon is defined for generating functions of a set affording a cyclic group action, generalizing Stembridge's <i>q</i> = -1 phenomenon. The phenomenon is shown to appear in various situations, involving <i>q</i>-binomial coefficients, Pólya-Redfield theory, polygon dissections, noncrossing partitions, finite reflection groups, and some finite field <i>q</i>-analogues.

References

[1]
{1} G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes, Amer. Math. Soc. DIMACS Book Series 64 (2004) 9-16.
[2]
{2} C.A. Athanasiadis, V. Reiner, Noncrossing partitions for the group Dn, preprint 2003 (at www.math.umn.edu/~reiner/Papers/papers.html).
[3]
{3} H. Barcelo, R. Maule, S. Sundaram, On counting permutations by pairs of congruence classes of major index, Electron. J. Combin. 9 (2002) R21.
[4]
{4} M. Beck, A. Feingold, M. Weiner, Arithmetic partition sums and orbits of Znk under the symmetric group Sk, Arχiv Preprint math. NT/0106267, 2001.
[5]
{5} P. Brändén, q-Narayana numbers and the flag h-vector of J(2 × n), Arχiv Preprint math. CO/0211318, 2002.
[6]
{6} F. Chapoton, http://igd.univ-lyon1.fr/~chapoton/arbres.html.
[7]
{7} H.S.M. Coxeter, Regular Complex Polytopes, 2nd Edition, Cambridge University Press, Cambridge, 1991.
[8]
{9} N.G. de Bruijn, Generalization of Pólya's fundamental theorem in enumerative combinatorial analysis, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959) 59-69.
[9]
{10} J. Désarménien, Étude modulo n des statistiques Mahoniennes, Sém. Loth. Combin. 22 (1990) 27-35.
[10]
{11} K. Drudge, On the orbits of Singer groups and their subgroups, Electron. J. Combin. 9 (2002) R15 (electronic).
[11]
{12} A. Elashvili, M. Jibladze, D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebr. Combin. 10 (1999) 173-186.
[12]
{13} O.D. Eng, Quotients of Poincaré polynomials evaluated at -1, J. Algebr. Combin. 13 (2001) 29-40.
[13]
{14} J. Fulman, Applications of the Brauer complex: card shuffling, permutation statistics and dynamical systems, J. Algebra 243 (2001) 96-122.
[14]
{15} J. Fürlinger, J. Hofbauer, q-Catalan numbers, J. Combin. Theory Ser. A 40 (1985) 248-264.
[15]
{16} G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
[16]
{17} M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebr. Combin. 3 (1994) 17-76.
[17]
{18} G. Hardy, E. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford, New York, 1979.
[18]
{19} T.J. Hewett, Modular invariant theory of parabolic subgroups of GLn(Fq) and the associated Steenrod modules, Duke Math. J. 82 (1996) 91-102.
[19]
{20} H. Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, Vol. 54, Pitman (Advanced Publishing Program), London, 1982.
[20]
{21} W. Kraśkiewicz, J. Weyman, Algebra of coinvariants and the action of a Coxeter element, Bayreuth Math. Schr. 63 (2001) 265-284.
[21]
{22} A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall Littlewood functions, quantum affine algebras and unipotent varieties, J. Math. Phys. 38 (1997) 1041-1068.
[22]
{23} D. Littlewood, The Theory of Group Characters, Oxford, New York, 1940.
[23]
{24} I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995.
[24]
{25} K. Ramanathan, Some applications of Ramanujan's trigonometrical sum Cm(n), Indian Acad. Sci. Sect. A 20 (1944) 62-70.
[25]
{26} R.C. Read, On the number of self-complementary graphs and digraphs, J. London Math. Soc. 38 (1963) 99-104.
[26]
{27} V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997) 195-222.
[27]
{28} V. Reiner, Note on a theorem of Eng, Ann. Combin. 6 (2002) 117-118.
[28]
{29} V. Reiner, Equivariant fiber polytopes, Doc. Math. 7 (2002) 113-132 (electronic).
[29]
{30} V. Reiner, D. Stanton, P. Webb, Springer's theorem for modular coinvariants of GLn(Fq), Manuscript, 2004 (at www.math.umn.edu/~reiner/Papers/papers.html).
[30]
{31} V. Reiner, D. Stanton, P. Webb, Springer's regular elements over arbitrary fields, Manuscript, 2004 (at www.math.umn.edu/~reiner/Papers/papers.html).
[31]
{32} G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.
[32]
{33} R. Simion, Noncrossing partitions, Formal power series and algebraic combinatorics (Vienna, 1997), Discrete Math. 217 (2000) 367-409.
[33]
{34} R. Simion, A type-B associahedron, Adv. in Appl. Math. 30 (2003) 2-25.
[34]
{35} T.A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974) 159-198.
[35]
{36} R.P. Stanley, Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980) 168-184.
[36]
{37} R.P. Stanley, Polygon dissections and standard Young tableaux, J. Combin. Theory Ser. A 76 (1996) 175-177.
[37]
{38} R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 49. Cambridge University Press, Cambridge, 1997.
[38]
{39} R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62. Cambridge University Press, Cambridge, 1999.
[39]
{40} D. Stanton, D. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985) 211-247.
[40]
{41} D. Stanton, D. White, Constructive Combinatorics, Undergraduate Texts in Mathematics, Springer, New York, 1986.
[41]
{42} J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser. A 68 (1994) 372-409.
[42]
{43} J.R. Stembridge, On minuscule representations, plane partitions and involutions in complex Lie groups, Duke Math. J. 73 (1994) 469-490.
[43]
{44} J.R. Stembridge, Canonical bases and self-evacuating tableaux, Duke Math. J. 82 (1996) 585-606.
[44]
{45} R.D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Wien. Ber. 111 (1902) 1567-1601.
[45]
{46} S. Wagon, H. Wilf, When are subset sums equidistributed modulo m?, Electron J. Combin. 1 (1994) R3 (electronic).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Combinatorial Theory Series A
Journal of Combinatorial Theory Series A  Volume 108, Issue 1
October 2004
163 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 October 2004

Author Tags

  1. Hook formula
  2. Kraskiewicz-Weyman
  3. Schur function
  4. noncrossing partitions
  5. ordered tree
  6. polygon dissections
  7. principal specialization
  8. q-binomial coefficient
  9. q-multinomial coefficient
  10. roots-of-unity
  11. singer cycle
  12. springer regular element

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media