Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Some refinements of Stanley's shuffle theorem

Published: 01 April 2024 Publication History

Abstract

We give a combinatorial proof of Stanley's shuffle theorem by using the insertion lemma of Haglund, Loehr and Remmel. Based on this combinatorial construction, we establish several refinements of Stanley's shuffle theorem.

References

[1]
R.M. Adin, I.M. Gessel, V. Reiner, Y. Roichman, Cyclic quasi-symmetric functions, Isr. J. Math. 243 (2021) 437–500.
[2]
G.E. Andrews, The Theory of Partitions, Addison-Wesley Publishing Co., 1976.
[3]
D. Baker-Jarvis, B.E. Sagan, Bijective proofs of shuffle compatibility results, Adv. Appl. Math. 113 (2020).
[4]
R. Domagalski, J. Liang, Q. Minnich, B.E. Sagan, J. Schmidt, A. Sietsema, Cyclic shuffle compatibility, Sémin. Lothar. Comb. 85 (2020).
[5]
D. Foata, On the Netto inversion number of a sequence, Proc. Am. Math. Soc. 19 (1968) 236–240.
[6]
A.M. Garsia, I.M. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979) 288–305.
[7]
I.M. Gessel, Y. Zhuang, Shuffle-compatible permutation statistics, Adv. Math. 332 (2018) 85–141.
[8]
D. Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set, Electron. J. Comb. 25 (2018).
[9]
I.P. Goulden, A bijective proof of Stanley's shuffling theorem, Trans. Am. Math. Soc. 288 (1985) 147–160.
[10]
J. Haglund, N. Loehr, J.B. Remmel, Statistics on wreath products, perfect matchings, and signed words, Eur. J. Comb. 26 (2005) 835–868.
[11]
K.Q. Ji, D.T.X. Zhang, A cyclic analogue of Stanley's shuffling theorem, Electron. J. Comb. 29 (2022).
[12]
P.A. MacMahon, Collected Papers, vol. I, MIT Press, Cambridge, MA, 1978.
[13]
M. Novick, A bijective proof of a major index theorem of Garsia and Gessel, Electron. J. Comb. 17 (2010).
[14]
B.E. Sagan, C.D. Savage, Mahonian pairs, J. Comb. Theory, Ser. A 119 (2012) 526–545.
[15]
J.D. Stadler, Stanley's shuffling theorem revisited, J. Comb. Theory, Ser. A 88 (1999) 176–187.
[16]
R.P. Stanley, Ordered Structures and Partitions, Mem. Amer. Math. Soc., No. 119, American Mathematical Society, 1972, iii+104 pp.
[17]
R.P. Stanley, Enumerative Combinatorics, vol. I, 2nd ed., Cambridge University Press, Cambridge, 2012.
[18]
L. Yang, S.H.F. Yan, On a conjecture concerning shuffle-compatible permutation statistics, Electron. J. Comb. 29 (2022) P3.3.

Index Terms

  1. Some refinements of Stanley's shuffle theorem
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Combinatorial Theory Series A
        Journal of Combinatorial Theory Series A  Volume 203, Issue C
        Apr 2024
        285 pages

        Publisher

        Academic Press, Inc.

        United States

        Publication History

        Published: 01 April 2024

        Author Tags

        1. Descent
        2. Major index
        3. Permutation
        4. Shuffle
        5. Partition

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 30 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media