Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

A systematic review of blockchain scalability: : Issues, solutions, analysis and future research

Published: 01 December 2021 Publication History

Abstract

Blockchain is an inspiring emerging technology that takes much attention from various researchers and companies. The technology offers various benefits such as data security, autonomy, immutability, transparency, and auditability. Hence, blockchain is getting large adoptions for various applications besides cryptocurrencies. Despite these benefits, scalability is a big challenge to blockchain impeding its mainstream adoption. This paper gives a systematic review of blockchain scalability. We follow a systematic process to investigate the research trend on blockchain scalability and review its state of the art. We review the various proposed solutions and methods for blockchain scalability. We also review the performance analysis of blockchain systems. We assess the proposed scalability solutions, deduce future research directions on the blockchain scalability, and finally discuss the blockchain adoption. We hope this paper will serve as a guide for learning and research on blockchain scalability.

Highlights

Overview of blockchain and its scalability issues proposing a five-layer conceptual model for the blockchain ecosystem.
A systematic review process to investigate the research trend and state of the art on blockchain scalability.
Classification of the various proposed blockchain scalability solutions and performance analyses.
Comprehensive review of the proposed blockchain scalability solutions and performance analyses.
Future research directions and opportunities on blockchain scalability.

References

[1]
Abraham I., Malkhi D., Nayak K., Ren L., Spiegelman A., Solida: A blockchain protocol based on reconfigurable Byzantine consensus, in: Leibniz International Proceedings in Informatics, Vol. 95, LIPIcs, 2018,. cited by 4.
[2]
Akpinar E., Yeşilada Y., Temizer S., The effect of context on small screen and wearable device users’ performance - a systematic review, ACM Comput. Surv. 53 (3) (2020),. URL https://doi-org.ezproxy.cityu.edu.hk/10.1145/3386370.
[3]
Aljassas, H.M.A., Sasi, S., 2019. Performance evaluation of proof-of-work and collatz conjecture consensus algorithms. In: 2019 2nd International Conference on Computer Applications Information Security. ICCAIS. pp. 1–6.
[4]
Alrubei S.M., Ball E.A., Rigelsford J.M., Willis C.A., Latency and performance analyses of real-world wireless IoT-blockchain application, IEEE Sens. J. 20 (13) (2020) 7372–7383.
[5]
Altarawneh A., Herschberg T., Medury S., Kandah F., Skjellum A., Buterin’s scalability trilemma viewed through a state-change-based classification for common consensus algorithms, in: 2020 10th Annual Computing and Communication Workshop and Conference, CCWC, 2020, pp. 0727–0736,.
[6]
Ampel, B., Patton, M., Chen, H., 2019. Performance modeling of hyperledger sawtooth blockchain. In: 2019 IEEE International Conference on Intelligence and Security Informatics. ISI. pp. 59–61.
[7]
Anjana P.S., Kumari S., Peri S., Rathor S., Somani A., An efficient framework for optimistic concurrent execution of smart contracts, in: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP, 2019, pp. 83–92,.
[8]
Azhar D., Mendes E., Riddle P., A systematic review of web resource estimation, in: Proceedings of the 8th International Conference on Predictive Models in Software Engineering, PROMISE ’12, Association for Computing Machinery, New York, NY, USA, 2012, pp. 49–58,.
[9]
B N.Z., Aminian M., Javadi B., Blockchain-based decentralized storage networks: A survey, J. Netw. Comput. Appl. 162 (2020),.
[10]
Back A., Corallo M., Dashjr L., Friedenbach M., Maxwell G., Miller A., Poelstra A., Timón J., Wuille P., Enabling blockchain innovations with pegged sidechains, 2014, URL: http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains.
[11]
Bai C., State-of-the-art and future trends of blockchain based on DAG structure, in: Structured Object-Oriented Formal Language and Method, Springer, Cham, 2019, pp. 183–196.
[12]
Bai L., Hu M., Liu M., Wang J., BPIIoT: A light-weighted blockchain-based platform for Industrial IoT, IEEE Access 7 (2019) 58381–58393.
[13]
Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., Chatterjee, S., 2018. Performance characterization of hyperledger fabric. In: 2018 Crypto Valley Conference on Blockchain Technology. CVCBT. pp. 65–74.
[14]
Berendea N., Mercier H., Onica E., Rivière E., Fair and efficient gossip in hyperledger fabric, in: 2020 IEEE 40th International Conference on Distributed Computing Systems, ICDCS, 2020, pp. 190–200,.
[15]
Bergman S., Asplund M., Nadjm-Tehrani S., Permissioned blockchains and distributed databases: A performance study, Concurr. Comput.: Pract. Exper. 32 (12) (2020),. e5227 cpe.5227. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5227.
[16]
Bertolino A., Angelis G.D., Gallego M., García B., Gortázar F., Lonetti F., Marchetti E., A systematic review on cloud testing, ACM Comput. Surv. 52 (5) (2019),. URL https://doi-org.ezproxy.cityu.edu.hk/10.1145/3331447.
[18]
Bitcoinunlimited A., Bitcoin unlimited: The peer-to-peer electronic cash system for planet earth, 2020, URL https://www.bitcoinunlimited.info/.
[19]
Boneh D., Bonneau J., Bünz B., Fisch B., Verifiable delay functions, in: Advances in Cryptology, CRYPTO 2018, Springer, Cham, 2018, pp. 757–788.
[20]
Boyd S., Ghosh A., Prabhakar B., Shah D., Randomized gossip algorithms, IEEE Trans. Inform. Theory 52 (6) (2006) 2508–2530,.
[21]
Bragagnolo S., Rocha H., Denker M., Ducasse S., Ethereum query language, in: Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 1–8,.
[22]
Bruce, J., 2014. The mini-blockchain scheme. White paper.
[23]
Burdges J., Cevallos A., Czaban P., Habermeier R., Hosseini S., Lama F., Kilinc Alper H., Luo X., Shirazi F., Stewart A., Wood G., Overview of polkadot and its design considerations, 2020, arXiv:2005.13456.
[24]
Buterin V., Griffith V., Casper the friendly finality gadget, 2017, CoRR abs/1710.09437. arXiv:1710.09437. URL http://arxiv.org/abs/1710.09437.
[25]
Butun I., Österberg P., A review of distributed access control for blockchain systems towards securing the internet of things, IEEE Access 9 (2021) 5428–5441,.
[26]
Cachin C., Vukolić M., Blockchain consensus protocols in the wild, 2017,. arXiv preprint arXiv:1707.01873, arXiv:1707.01873.
[27]
Cao B., Zhang Z., Feng D., Zhang S., Zhang L., Peng M., Li Y., Performance analysis and comparison of PoW, PoS and DAG based blockchains, Digit. Commun. Netw. (2020),.
[28]
Cardano B., What is cardano, 2020, URL https://www.cardano.org/en/what-is-cardano/.
[29]
Chaumont, G., Bugnot, P., Hildreth, Z., Giraux, B., 2019. DPoPS: Delegated Proof-of-Private-Stake, a DPoS implementation under X-Cash, a Monero based hybrid-privacy coin. Yellowpaper.
[30]
Chen F., Xiao Z., Cui L., Lin Q., Li J., Yu S., Blockchain for Internet of things applications: A review and open issues, J. Netw. Comput. Appl. 172 (2020),.
[31]
Chen J., Zhang X., Shangguan P., Improved PBFT algorithm based on reputation and voting mechanism, J. Phys. Conf. Ser. 1486 (2020),.
[32]
Chen S., Zhang J., Shi R., Yan J., Ke Q., A comparative testing on performance of blockchain and relational database: Foundation for applying smart technology into current business systems, in: Distributed, Ambient and Pervasive Interactions: Understanding Humans, Springer, 2018, pp. 21–34.
[33]
China P., PwC Global Blockchain Survey 2018 - Blockchain is here. What’s your next move?, Res. Insights (2018) URL www.pwccn.com/global-blockchain-survey-2018.
[34]
Cisco, ., 2018. Blockchain by Cisco - Build trust-based business networks for digital transformation. Cisco Blockchain White Paper.
[35]
Conley J.P., The geeq white paper, 2020, URL https://geeq.io/geeq-white-paper-2/.
[36]
Corallo M., High-speed bitcoin relay network, 2013, URL http://sourceforge.net/p/bitcoin/mailman/message/31604935/.
[37]
Corallo M., Compact block relay, 2016, BIP152. URL https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki.
[38]
Credit T.N., Universal off-chain scaling solution, 2018, Trinity, URL https://trinity.tech/#/.
[39]
Cryptoreport T.N., Live crypto prices and trading, 2021, URL https://cryptoreport.com/all.
[40]
Dai, X., Xiao, J., Yang, W., Wang, C., Jin, H., 2019. Jidar: A jigsaw-like data reduction approach without trust assumptions for bitcoin system. In: 2019 IEEE 39th International Conference on Distributed Computing Systems. ICDCS. pp. 1317–1326.
[41]
Dai M., Zhang S., Wang H., Jin S., A low storage room requirement framework for distributed ledger in blockchain, IEEE Access 6 (2018) 22970–22975.
[42]
Daian P., Pass R., Shi E., Snow white: Robustly reconfigurable consensus and applications to provably secure proof of stake, in: Financial Cryptography and Data Security, Springer, 2019, pp. 23–41.
[43]
David B., Gaži P., Kiayias A., Russell A., Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain, in: Advances in Cryptology, EUROCRYPT 2018, Springer, 2018, pp. 66–98.
[44]
Debe M., Salah K., Rehman M.H.U., Svetinovic D., IoT public fog nodes reputation system: A decentralized solution using ethereum blockchain, IEEE Access 7 (2019) 178082–178093,.
[45]
Decker C., Wattenhofer R., A fast and scalable payment network with bitcoin duplex micropayment channels, in: Stabilization, Safety, and Security of Distributed Systems, Springer, Cham, 2015, pp. 3–18.
[46]
Dhulavvagol P.M., Bhajantri V.H., Totad S.G., Blockchain ethereum clients performance analysis considering E-voting application, Procedia Comput. Sci. 167 (2020) 2506–2515,. International Conference on Computational Intelligence and Data Science.
[47]
Dickerson T., Gazzillo P., Herlihy M., Koskinen E., Adding concurrency to smart contracts, Distrib. Comput. (2019) 1–17.
[48]
Ding D., Jiang X., Wang J., Wang H., Zhang X., Sun Y., Txilm: Lossy block compression with salted short hashing, 2019, CoRR abs/1906.06500. arXiv:1906.06500. URL http://arxiv.org/abs/1906.06500.
[49]
Dinh T., Wang J., Chen G., Liu R., Ooi B., Tan K.-L., BLOCKBENCH: A framework for analyzing private blockchains, 2017, pp. 1085–1100,.
[50]
Durand A., Hamida E.B., Leporini D., Memmi G., Asymptotic performance analysis of blockchain protocols, 2019, CoRR abs/1902.04363. arXiv:1902.04363. URL http://arxiv.org/abs/1902.04363.
[51]
Eberhardt J., Tai S., ZoKrates - scalable privacy-preserving off-chain computations, in: 2018 IEEE International Conference on Internet of Things (IThings) and IEEE GreenCom and IEEE CPSCom and IEEE Smart Data (SmartData), 2018, pp. 1084–1091,.
[52]
Eklund P.W., Beck R., Factors that impact blockchain scalability, in: Proceedings of the 11th International Conference on Management of Digital EcoSystems, MEDES ’19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 126–133,.
[53]
Eyal I., Gencer A.E., Sirer E.G., Renesse R.V., Bitcoin-NG: A scalable blockchain protocol, in: 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 16, USENIX Association, Santa Clara, CA, 2016, pp. 45–59. URL https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal.
[54]
Fan, X., Chai, Q., 2018. Roll-DPoS: a randomized delegated proof of stake scheme for scalable blockchain-based internet of things systems. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. pp. 482–484.
[55]
Fan X.X., Chai Q., Assoc Comp M., Roll-DPoS(sic): A randomized delegated proof of stake scheme for scalable blockchain-based internet of things systems, in: Proceedings of the 15th Eai International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2018, pp. 482–484,.
[56]
Feng L., Zhang H., Chen Y., Lou L., Scalable dynamic multi-agent practical byzantine fault-tolerant consensus in permissioned blockchain, Appl. Sci. 8 (10) (2018) 1919.
[57]
Fibre L., Fibre: What is fibre?, 2019, URL http://bitcoinfibre.org/index.html.
[58]
Fitzi M., Gazi P., Kiayias A., Russell A., Parallel chains: Improving throughput and latency of blockchain protocols via parallel composition, IACR Cryptol. ePrint Arch. 2018 (2018) 1119.
[59]
Fitzi M., Gazi P., Kiayias A., Russell A., Proof-of-stake blockchain protocols with near-optimal throughput, IACR Cryptol. ePrint Arch. 2020 (2020) 37.
[60]
Fortino G., Fotia L., Messina F., Rosaci D., Sarné G.L., Trust and reputation in the internet of things: State-of-the-art and research challenges, IEEE Access 8 (2020) 60117–60125,.
[61]
Fortino G., Messina F., Rosaci D., Sarné G.M.L., A reputation capital and blockchain-based model to support group formation processes in the internet of things, in: 2019 6th International Conference on Control, Decision and Information Technologies, CoDIT, 2019, pp. 888–893,.
[62]
Furlonger D., Valdes R., Practical blockchain: a gartner trend insight report, 2017, URL https://blockcointoday.com/wp-content/uploads/2018/04/Practical-Blockchain_-A-Gartner-Trend-Insight-Report.pdf.
[63]
Gao Y., Kawai S., Nobuhara H., Scalable blockchain protocol based on proof of stake and sharding, J. Adv. Comput. Intell. Intell. Inf. 23 (5) (2019) 856–863.
[64]
Gao, Z., Xu, L., Chen, L., Shah, N., Lu, Y., Shi, W., 2017. Scalable blockchain based smart contract execution. In: 2017 IEEE 23rd International Conference on Parallel and Distributed Systems. ICPADS. pp. 352–359.
[65]
Gao S., Yu T., Zhu J., Cai W., T-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithm, China Commun. 16 (12) (2019) 111–123,.
[66]
Giancarlo F., Lidia F., Fabrizio M., Domenico R., Giuseppe M.S., A blockchain-based group formation strategy for optimizing the social reputation capital of an IoT scenario, Simul. Model. Pract. Theory 108 (2021),. URL https://www.sciencedirect.com/science/article/pii/S1569190X20301891.
[67]
Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N., 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17. New York. pp. 51–68. https://doi.org/10.1145/3132747.3132757.
[68]
GmbH, B., 2018. BigchainDB2.0 - the blockchain database. White paper. URL https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf.
[69]
Golan Gueta G., Abraham I., Grossman S., Malkhi D., Pinkas B., Reiter M., Seredinschi D., Tamir O., Tomescu A., SBFT: A scalable and decentralized trust infrastructure, in: 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN, 2019, pp. 568–580,.
[70]
Gorenflo C., Lee S., Golab L., Keshav S., FastFabric: Scaling hyperledger fabric to 20,000 transactions per second, in: 2019 IEEE International Conference on Blockchain and Cryptocurrency, ICBC, 2019, pp. 455–463,.
[71]
Group J.-R.W., JSON-RPC 2.0 specification, 2013, JSON-RPC. URL https://www.jsonrpc.org/specification.
[72]
gRPC Authors J.-R.W., Introduction to gRPC, 2021, GRPC.Io. URL https://grpc.io/docs/what-is-grpc/introduction/.
[73]
Gündlach R., Hoepman J.-H., van der Hofstad R., Koens T., Meijer S., Hydra: A multiple blockchain protocol for improving transaction throughput, 2019, arXiv preprint arXiv:1910.06682.
[74]
Hafid A., Hafid A., Samih M., Scaling blockchains: A comprehensive survey, IEEE Access (2020) 1.
[75]
Han R., Shapiro G., Gramoli V., Xu X., On the performance of distributed ledgers for internet of things, Internet Things 10 (2020),. Special Issue of the Elsevier IoT Journal on Blockchain Applications in IoT Environments.
[76]
Hao, Y., Li, Y., Dong, X., Fang, L., Chen, P., 2018. Performance analysis of consensus algorithm in private blockchain. In: 2018 IEEE Intelligent Vehicles Symposium. IV. pp. 280–285.
[77]
Hari A., Kodialam M., Lakshman T.V., ACCEL: Accelerating the bitcoin blockchain for high-throughput, low-latency applications, in: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 2368–2376,.
[78]
Harz D., Boman M., The scalability of trustless trust, in: Financial Cryptography and Data Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 2019, pp. 279–293.
[79]
Hazari S.S., Mahmoud Q.H., A parallel proof of work to improve transaction speed and scalability in blockchain systems, in: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC, 2019, pp. 0916–0921,.
[80]
He X., Cui Y., Jiang Y., An improved gossip algorithm based on semi-distributed blockchain network, in: 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC, 2019, pp. 24–27,.
[81]
Hees H., Raiden network: Off-chain state network for fast DApps, in: Devcon Two, Ethereum Foundation, 2016.
[82]
Hewa T., Ylianttila M., Liyanage M., Survey on blockchain based smart contracts: Applications, opportunities and challenges, J. Netw. Comput. Appl. (2020),.
[83]
Huang B., Jin L., Lu Z., Zhou X., Wu J., Tang Q., Hung P.C.K., BoR: Toward high-performance permissioned blockchain in RDMA-enabled network, IEEE Trans. Serv. Comput. 13 (2) (2020) 301–313,.
[84]
Huang D., Ma X., Zhang S., Performance analysis of the raft consensus algorithm for private blockchains, IEEE Trans. Syst. Man Cybern. A 50 (1) (2020) 172–181.
[85]
Hyperledger D., Measuring blockchain performance with hyperledger caliper, 2020, URL https://github.com/hyperledger/caliper.
[86]
Jalalzai M.M., Busch C., Richard G.G., Proteus: A scalable BFT consensus protocol for blockchains, in: 2019 IEEE International Conference on Blockchain, 2019, pp. 308–313,.
[87]
Jalalzai M.M., Richard G., Busch C., An experimental evaluation of BFT protocols for blockchains, in: Blockchain, ICBC 2019, Springer, 2019, pp. 34–48.
[88]
Javaid U., Aman M.N., Sikdar B., A scalable protocol for driving trust management in internet of vehicles with blockchain, IEEE Internet Things J. 7 (12) (2020) 11815–11829,.
[89]
Jiang L., Chang X., Liu Y., Mišić J., Mišić V.B., Performance analysis of hyperledger fabric platform: A hierarchical model approach, Peer Peer Netw. Appl. (2020) 1–12.
[90]
Jiang Y., Lian Z., High performance and scalable byzantine fault tolerance, in: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC, IEEE, 2019, pp. 1195–1202.
[91]
Jiang Y., Lian Z., Scalable efficient byzantine fault tolerance, in: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC, IEEE, 2019, pp. 1736–1742.
[92]
Jiao Z., Tian R., Shang D., Ding H., Bicomp: A bilayer scalable nakamoto consensus protocol, 2018, CoRR abs/1809.01593. arXiv:1809.01593. URL http://arxiv.org/abs/1809.01593.
[93]
Judmayer A., Zamyatin A., Stifter N., Voyiatzis A.G., Weippl E., Merged mining: Curse or cure?, in: Data Privacy Management, Cryptocurrencies and Blockchain Technology, Springer, Cham, 2017, pp. 316–333.
[94]
Kalodner H., Goldfeder S., Chen X., Weinberg S.M., Felten E.W., Arbitrum: Scalable, private smart contracts, in: 27th USENIX Security Symposium, USENIX Security 18, USENIX Association, Baltimore, MD, 2018, pp. 1353–1370. URL https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner.
[95]
Kiayias A., Russell A., David B., Oliynykov R., Ouroboros: A provably secure proof-of-stake blockchain protocol, in: Advances in Cryptology, CRYPTO 2017, Springer, Cham, 2017, pp. 357–388.
[96]
Kim, S., Kwon, Y., Cho, S., 2018. A survey of scalability solutions on blockchain. In: 2018 International Conference on Information and Communication Tech. Convergence. ICTC. pp. 1204–1207.
[97]
Kim S., Lee S., Jeong C., Cho S., Byzantine fault tolerance based multi-block consensus algorithm for throughput scalability, in: 2020 International Conference on Electronics, Information, and Communication, ICEIC, IEEE, 2020, pp. 1–3.
[98]
Kim T., Noh J., Cho S., Scc: storage compression consensus for blockchain in lightweight IoT network, in: 2019 IEEE International Conference on Consumer Electronics, ICCE, IEEE, 2019, pp. 1–4.
[99]
Klems M., Eberhardt J., Tai S., Härtlein S., Buchholz S., Tidjani A., Trustless intermediation in blockchain-based decentralized service marketplaces, in: International Conference on Service-Oriented Computing, Springer, 2017, pp. 731–739.
[100]
Kocsis, I., Pataricza, A., Telek, M., Klenik, A., Deé, F., Cseh, D., 2017. Towards performance modeling of hyperledger fabric. In: International IBM Cloud Academy Conference. ICACON.
[101]
Kogias E.K., Jovanovic P., Gailly N., Khoffi I., Gasser L., Ford B., Enhancing bitcoin security and performance with strong consistency via collective signing, in: 25th USENIX Security Symposium, USENIX Security 16, USENIX Association, Austin, TX, 2016, pp. 279–296. URL https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias.
[102]
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B., 2018. OmniLedger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy. SP. pp. 583–598.
[103]
Kuzlu, M., Pipattanasomporn, M., Gurses, L., Rahman, S., 2019. Performance analysis of a hyperledger fabric blockchain framework: Throughput, latency and scalability. In: 2019 IEEE International Conference on Blockchain. pp. 536–540.
[104]
Kwon J., Buchman E., Cosmos white paper: A network of distributed ledgers, 2020, Cosmos. URL https://cosmos.network/resources/whitepaper.
[105]
Kwon M., Yu H., Performance improvement of ordering and endorsement phase in hyperledger fabric, in: 2019 Sixth International Conference on Internet of Things: Systems, Management and Security, IOTSMS, 2019, pp. 428–432,.
[106]
[107]
Lao L., Dai X., Xiao B., Guo S., G-PBFT: A location-based and scalable consensus protocol for IoT-blockchain applications, in: 2020 IEEE International Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2020, pp. 664–673.
[108]
Lau J., Merkelized abstract syntax tree, 2016, BIP: 114. URL https://github.com/bitcoin/bips/wiki/Comments:BIP-0114.
[109]
Lee S.-b., Hwang D., Kim J., Kim K.-H., Proof-of-lottery: Design for block producing algorithm based on PoS for scalability, in: 2020 International Conference on Information Networking, ICOIN, IEEE, 2020, pp. 666–669.
[110]
Lee J.W., Park S., A study on performance improvement of hyperledger fabric through batched chaincode message, in: 2020 21st Asia-Pacific Network Operations and Management Symposium, APNOMS, 2020, pp. 259–262,.
[111]
Lee H., Yoon C., Bae S., Lee S., Lee K., Kang S., Sung K., Min S., Multi-batch scheduling for improving performance of hyperledger fabric based IoT applications, in: 2019 IEEE Global Communications Conference, GLOBECOM, 2019, pp. 1–6,.
[112]
Lerner, S.D., 2015. DagCoin: a cryptocurrency without blocks. White paper.
[113]
Lerner S.D., Lumino transaction compression protocol (LTCP), 2017, RSK Labs-Rev10. URL https://docs.rsk.co/LuminoTransactionCompressionProtocolLTCP.pdf.
[114]
Lerner, S.D., 2019. RSK-Rootstock platform: Bitcoin powered smart contracts. White paper, revision 11. URL https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf.
[115]
Lewenberg Y., Sompolinsky Y., Zohar A., Inclusive block chain protocols, in: Financial Cryptography and Data Security, Springer, Berlin, Heidelberg, 2015, pp. 528–547.
[116]
Li H., Li Z., Tian N., Resource bottleneck analysis of the blockchain based on tron’s TPS, 2020, pp. 944–950,.
[117]
Li C., Li P., Xu W., Long F., Chi-Chih Yao A., Scaling nakamoto consensus to thousands of transactions per second, 2018, CoRR abs/1805.03870. arXiv:1805.03870. URL http://arxiv.org/abs/1805.03870.
[118]
Li S., Yu M., Yang C., Avestimehr A.S., Kannan S., Viswanath P., PolyShard: Coded sharding achieves linearly scaling efficiency and security simultaneously, IEEE Trans. Inf. Forensics Secur. 16 (2021) 249–261,.
[119]
Limited D.T., Digital transaction, 2020, URL https://www.digital-transaction.com/.
[120]
Liu D., Alahmadi A., Ni J., Lin X., Shen X., Anonymous reputation system for IIoT-enabled retail marketing atop PoS blockchain, IEEE Trans. Ind. Inf. 15 (6) (2019) 3527–3537,.
[121]
Liu Y., He D., Obaidat M.S., Kumar N., Khan M.K., Raymond Choo K.-K., Blockchain-based identity management systems: A review, J. Netw. Comput. Appl. 166 (2020),.
[122]
Liu J., Li W., Karame G.O., Asokan N., Scalable byzantine consensus via hardware-assisted secret sharing, IEEE Trans. Comput. 68 (1) (2019) 139–151,.
[123]
Liu Y., Qian K., Yan J., Wang K., He L., Effective scaling of blockchain beyond consensus innovations and Moore’s law, 2020, arXiv:2001.01865v1. URL arXiv:2001.01865v1.
[124]
Liu X., Yu X., Ma X., Kuang H., A method to improve the fresh data query efficiency of blockchain, in: 2020 12th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA, 2020, pp. 823–827,.
[125]
Lombrozo E., Lau J., Wuille P., Segregated witness (consensus layer), 2015, BIP141. URL https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.
[126]
Long J., Wei R., Scalable BFT consensus mechanism through aggregated signature gossip, in: 2019 IEEE International Conference on Blockchain and Cryptocurrency, ICBC, 2019, pp. 360–367.
[127]
Ltd L.P., Remarkable throughput, 2020, LoopRing. URL https://loopring.org/#/protocol.
[128]
Lu F., Gan L., Dong Z., Li W., Jin H., Zomaya A.Y., A cache enhanced endorser design for mitigating performance degradation in hyperledger fabric, in: 2018 IEEE International Conference on Internet of Things (IThings) and IEEE GreenCom and IEEE CPSCom and IEEE Smart Data (SmartData), 2018, pp. 1001–1006,.
[129]
Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P., 2016. A secure sharding protocol for open blockchains. In: 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. New York. pp. 17–30. https://doi.org/10.1145/2976749.2978389.
[130]
Mahony A.O., Popovici E., A systematic review of blockchain hardware acceleration architectures, in: 2019 30th Irish Signals and Systems Conference, ISSC, IEEE, 2019, pp. 1–6.
[131]
Makhdoom I., Abolhasan M., Abbas H., Ni W., Blockchain’s adoption in IoT: The challenges, and a way forward, J. Netw. Comput. Appl. 125 (2019) 251–279,.
[132]
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M., 2019. Anonymous multi-hop locks for blockchain scalability and interoperability. In: NDSS.
[133]
Malik S., Dedeoglu V., Kanhere S.S., Jurdak R., TrustChain: Trust management in blockchain and IoT supported supply chains, in: 2019 IEEE International Conference on Blockchain (Blockchain), 2019, pp. 184–193,.
[134]
Martino, W., Quaintance, M., Popejoy, S., 2018a. Chainweb: A proof-of-work parallel-chain architecture for massive throughput. Chainweb whitepaper. 19.
[135]
Martino W., et al., The kadena public blockchain project summary whitepaper, 2018, pp. 1–7. Version.
[136]
Mazlan A.A., Daud S.M., Sam S.M., Abas H., Rasid S.Z.A., Yusof M.F., Scalability challenges in healthcare blockchain system—A systematic review, IEEE Access 8 (2020) 23663–23673.
[137]
McCorry P., Buckland C., Bakshi S., Wüst K., Miller A., You sank my battleship! a case study to evaluate state channels as a scaling solution for cryptocurrencies, in: Financial Cryptography and Data Security, Springer, Cham, 2020, pp. 35–49.
[138]
Miller A., Bentov I., Kumaresan R., McCorry P., Sprites: Payment channels that go faster than lightning, 2017, CoRR abs/1702.05812. arXiv:1702.05812. URL http://arxiv.org/abs/1702.05812.
[139]
Millman R., What is ethereum 2.0 and why does it matter?, 2020, Decrypt. URL https://decrypt.co/resources/what-is-ethereum-2-0.
[140]
Monrat A.A., Schelén O., Andersson K., A survey of blockchain from the perspectives of applications, challenges, and opportunities, IEEE Access 7 (2019) 117134–117151.
[141]
Multichain A.A., Enterprise blockchain that actually works, 2020.
[142]
Nasir Q., Qasse I., Talib M., Nassif A., Performance analysis of hyperledger fabric platforms, Secur. Commun. Netw. 2018 (2018) 1–14,.
[143]
Nick, J., Poelstra, A., Sanders, G., 2020. Liquid: A bitcoin sidechain. Liquid white paper. URL https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf.
[144]
Ochôa I., Piemontez R., Martins L., Leithardt V., Zeferino C., Experimental analysis of the scalability of ethereum blockchain in a private network, in: Proceedings of the 2nd Workshop Em Blockchain: Theory, Technology, and Applications, SBC, Porto Alegre, RS, Brasil, 2019,.
[145]
Park, S., Oh, S., Kim, H., 2019. Performance analysis of DAG-based cryptocurrency. In: 2019 IEEE International Conference on Communications Workshops. ICC Workshops. pp. 1–6.
[146]
Pass R., Shi E., Hybrid consensus: Scalable permissionless consensus, 2016.
[147]
Pawczuk L., Massey R., Holdowsky J., Deloitte 2019 global blockchain survey - blockchain gets down to business, Deloitte Insights (2019) URL https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-survey.pdf.
[148]
Pinar Ozisik A., Andresen G., Bissias G., Houmansadr A., Levine B., Graphene: A new protocol for block propagation using set reconciliation, in: Data Privacy Management, Cryptocurrencies and Blockchain Technology, Springer, 2017, pp. 420–428.
[149]
Poon, J., Buterin, V., 2017. Plasma: Scalable autonomous smart contracts. White paper. pp. 1–47.
[150]
Poon J., Dryja T., The bitcoin lightning network: Scalable off-chain instant payments, 2016, URL https://www.bitcoinlightning.com/bitcoin-lightning-network-whitepaper/.
[151]
Popov S., The tangle, 2016, p. 131. Cit. on. URL https://www.iota.org/foundation/research-papers.
[152]
Qu Q., Nurgaliev I., Muzammal M., Jensen C.S., Fan J., On spatio-temporal blockchain query processing, Future Gener. Comput. Syst. 98 (2019) 208–218.
[153]
randao.org, ., 2017. Randao: Verifiable random number generation. Randao whitepaper. URL https://www.randao.org/whitepaper/Randao_v0.85_en.pdf.
[154]
Riley C., Know your API protocols: SOAP vs. REST vs. JSON-RPC vs. gRPC vs. graphql vs. Thrift, Mertech Data Syst. (2019) URL https://www.mertech.com/blog/know-your-api-protocols.
[155]
Rizun P.R., Towards massive on-chain scaling: Block propagation results with xthin, 2016, URL https://medium.com/@peter_r/towards-massive-on-chain-scaling-block-propagation-results-with-xthin-a0f1e3c23919.
[156]
Roehrs A., André da Costa C., da Rosa Righi R., Ferreira da Silva V., Goldim J.R., Schmidt D.C., Analyzing the performance of a blockchain-based personal health record implementation, J. Biomed. Inform. 92 (2019),.
[157]
Rouhani, S., Deters, R., 2017. Performance analysis of ethereum transactions in private blockchain. In: 2017 8th IEEE International Conference on Software Engineering and Service Science. ICSESS. pp. 70–74.
[158]
Rüsch S., Messadi I., Kapitza R., Towards low-latency byzantine agreement protocols using RDMA, in: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W, 2018, pp. 146–151,.
[159]
Sahoo M.S., Baruah P.K., HBasechainDB – A scalable blockchain framework on hadoop ecosystem, in: Supercomputing Frontiers, Springer, 2018, pp. 18–29.
[160]
Sakakibara Y., Morishima S., Nakamura K., Matsutani H., A hardware-based caching system on FPGA NIC for blockchain, IEICE Trans. Inf. Syst. E101.D (5) (2018) 1350–1360,.
[161]
sallal M.F., Owenson G., Adda M., Proximity awareness approach to enhance propagation delay on the bitcoin peer-to-peer network, in: 2017 IEEE 37th International Conference on Distributed Computing Systems, ICDCS, 2017, pp. 2411–2416,.
[162]
Sanka, A.I., Cheung, R.C.C., 2018. Efficient high performance FPGA based NoSQL caching system for blockchain scalability and throughput improvement. In: 2018 26th International Conference on Systems Engineering. ICSEng. pp. 1–8.
[163]
Sanka A.I., Cheung R.C., Appendix A: List of final screened/reviewed papers of our systematic review of blockchain scalability paper, 2020, URL https://tinyurl.com/Sanka2020review.
[164]
Sanka A.I., Irfan M., Huang I., Cheung R.C., A survey of breakthrough in blockchain technology: Adoptions, applications, challenges and future research, Comput. Commun. 169 (2021) 179–201,.
[165]
Schäffer M., di Angelo M., Salzer G., Performance and scalability of private ethereum blockchains, in: Business Process Management: Blockchain and Central and Eastern Europe Forum, Springer, 2019, pp. 103–118.
[166]
Shahsavari Y., Zhang K., Talhi C., A theoretical model for block propagation analysis in bitcoin network, IEEE Trans. Eng. Manage. (2020) 1–18.
[167]
Shi, Z., Zhou, H., Hu, Y., Jayachander, S., de Laat, C., Zhao, Z., 2019. Operating permissioned blockchain in clouds: A performance study of hyperledger sawtooth. In: 2019 18th International Symposium on Parallel and Distributed Computing. ISPDC. pp. 50–57.
[168]
Singh A., Click K., Parizi R.M., Zhang Q., Dehghantanha A., Choo K.-K.R., Sidechain technologies in blockchain networks: An examination and state-of-the-art review, J. Netw. Comput. Appl. 149 (2020).
[169]
Sompolinsky Y., Lewenberg Y., Zohar A., SPECTRE: A fast and scalable cryptocurrency protocol, IACR Cryptol. ePrint Arch. 2016 (2016) 1159.
[170]
Sompolinsky Y., Zohar A., Secure high-rate transaction processing in bitcoin, in: Financial Cryptography and Data Security, Springer, Berlin, Heidelberg, 2015, pp. 507–527.
[171]
Sompolinsky Y., Zohar A., Phantom, ghostdag, 2020.
[172]
Sukhwani, H., Martínez, J.M., Chang, X., Trivedi, K.S., Rindos, A., 2017. Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: 2017 IEEE 36th Symposium on Reliable Distributed Systems. SRDS. pp. 253–255.
[173]
Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J., Ford, B., 2017. Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium on Security and Privacy. SP. pp. 444–460.
[174]
Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly, N., Khoffi, I., Ford, B., 2016. Keeping authorities “Honest or Bust” with decentralized witness cosigning. In: 2016 IEEE Symposium on Security and Privacy. SP. pp. 526–545.
[175]
Tan D., Hu J., Wang J., VBBFT-raft: An understandable blockchain consensus protocol with high performance, in: 2019 IEEE 7th International Conference on Computer Science and Network Technology, ICCSNT, IEEE, 2019, pp. 111–115.
[176]
Team T.Z., The zilliqa project: A secure, scalable blockchain platform, 2018.
[177]
Team T.H., Open consensus for 10 billion people, 2019, URL https://harmony.one/.
[178]
Teutsch, J., Reitwießner, C., 2019. A scalable verification solution for blockchains. TrueBit white paper. URL arXiv preprint arXiv:1908.04756.
[179]
Thakkar, P., Nathan, S., Viswanathan, B., 2018. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. MASCOTS. pp. 264–276.
[180]
Thilagavathi M., Lopez D., Enhancing blockchain performance using parallel merkle root and parallel proof of work, 2020, URL https://www.jardcs.org/abstract.php?id=3564.
[181]
Thilakaratne M., Falkner K., Atapattu T., A systematic review on literature-based discovery: General overview, methodology, and statistical analysis, ACM Comput. Surv. 52 (6) (2019),. URL https://doi-org.ezproxy.cityu.edu.hk/10.1145/3365756.
[182]
Thomson G., Ethereum 2.0 will walk and ‘roll’ for two years before it can run, 2020, Decrypt. URL https://decrypt.co/34204/ethereum-2-0-will-walk-and-roll-for-two-years-before-it-can-run.
[183]
Toomim J., Benefits of LTOR in block entropy encoding (Xthinner), 2018, URL https://medium.com/@j_73307/benefits-of-ltor-in-block-entropy-encoding-or-8d5b77cc2ab0.
[184]
Trihinas, D., 2019. Datachain: A query framework for blockchains. In: Proceedings of the 11th International Conference on Management of Digital EcoSystems. pp. 134–141.
[185]
[186]
Wang S., Performance evaluation of hyperledger fabric with malicious behavior, in: Blockchain, ICBC 2019, Springer, Cham, 2019, pp. 211–219.
[187]
Wang S., Dinh T.T.A., Lin Q., Xie Z., Zhang M., Cai Q., Chen G., Fu W., Ooi B.C., Ruan P., Forkbase: An efficient storage engine for blockchain and forkable applications, 2018, arXiv preprint arXiv:1802.04949.
[188]
Wang K., Kim H.S., FastChain: Scaling blockchain system with informed neighbor selection, in: 2019 IEEE International Conference on Blockchain (Blockchain), 2019, pp. 376–383,.
[189]
Wang Y., Song Z., Cheng T., Improvement research of PBFT consensus algorithm based on credit, in: Blockchain and Trustworthy Systems, Springer, Singapore, 2020, pp. 47–59.
[190]
Wang J., Wang H., Monoxide: Scale out blockchains with asynchronous consensus zones, in: 16th USENIX Symposium on Networked Systems Design and Implementation, NSDI 19, USENIX Association, Boston, MA, 2019, pp. 95–112. URL https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping.
[191]
Wang X., Zha X., Ni W., Liu P., Jay Y.G., Niu X., Zheng K., Survey on blockchain for Internet of Things, Comput. Commun. 136 (2019) 10–29,.
[192]
Wickboldt C., Benchmarking a Blockchain-based Certification Storage System, No. 2019/5, Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft, Berlin, 2019, URL http://hdl.handle.net/10419/195585.
[193]
Wood, G., 2016. Polkadot: Vision for a heterogeneous multi-chain framework. White paper.
[194]
Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S., 2020. Ace: Asynchronous and concurrent execution of complex smart contracts. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. pp. 587–600.
[195]
Xie J., Yu F., Huang T., Xie R., Liu J., Liu Y., A survey on the scalability of blockchain systems, IEEE Netw. 33 (5) (2019) 166–173.
[196]
Xu, Z., Han, S., Chen, L., 2018. CUB, a consensus unit-based storage scheme for blockchain system. In: 2018 IEEE 34th International Conference on Data Engineering. ICDE. pp. 173–184.
[197]
Yang L., Bagaria V., Wang G., Alizadeh M., Tse D., Fanti G., Viswanath P., Prism: Scaling bitcoin by 10,000x, 2020, arXiv:1909.11261.
[198]
Yang, S., Chen, Z., Cui, L., Xu, M., Ming, Z., Xu, K., 2019. CoDAG: An efficient and compacted DAG-based blockchain protocol. In 2019 IEEE International Conference on Blockchain (Blockchain). pp. 314–318.
[199]
Yu W., Luo K., Ding Y., You G., Hu K., A parallel smart contract model, in: Proceedings of the 2018 International Conference on Machine Learning and Machine Intelligence, MLMI2018, 2018, pp. 72–77,.
[200]
Yu H., Nikolic I., Hou R., Saxena P., OHIE: Blockchain scaling made simple, 2019, arXiv:1811.12628.
[201]
Yu L., Tsai W.-T., Li G., Yao Y., Hu C., Deng E., Smart-contract execution with concurrent block building, 2017, pp. 160–167,.
[202]
Yu G., Wang X., Yu K., Ni W., Zhang J.A., Liu R.P., Survey: Sharding in blockchains, IEEE Access (2020) 14155–14181.
[203]
Yuan P., Zheng K., Xiong X., Zhang K., Lei L., Performance modeling and analysis of a Hyperledger-based system using GSPN, Comput. Commun. 153 (2020) 117–124,.
[204]
Zamani M., Movahedi M., Raykova M., RapidChain: Scaling blockchain via full sharding, in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 931–948,.
[205]
Zhang H., Babar M.A., Tell P., Identifying relevant studies in software engineering, Inf. Softw. Technol. 53 (6) (2011) 625–637,. Special Section: Best papers from the APSEC.
[206]
Zhang, J., Gao, J., Wu, Z., Yan, W., Wo, Q., Li, Q., Chen, Z., 2019. Performance analysis of the libra blockchain: An experimental study. In: 2019 2nd International Conference on Hot Information-Centric Networking. HotICN. pp. 77–83.
[207]
Zhang J., Rong Y., Cao J., Rong C., Bian J., Wu W., DBFT: A Byzantine fault tolerant protocol with graceful performance degradation, in: 2019 38th Symposium on Reliable Distributed Systems, SRDS, IEEE, 2019, pp. 123–12309.
[208]
Zheng Q., Li Y., Chen P., Dong X., An innovative IPFS-based storage model for blockchain, in: 2018 IEEE/WIC/ACM Int. Conference on Web Intelligence, WI, 2018, pp. 704–708,.
[209]
Zhou H.-S., Fractal: A new paradigm for high-performance proof-of-stake blockchains, in: Proceedings of the Seventh International Workshop on Security in Cloud Computing, SCC ’19, Association for Computing Machinery, New York, NY, USA, 2019, p. 3,.
[210]
Zhou Q., Huang H., Zheng Z., Bian J., Solutions to scalability of blockchain: A survey, IEEE Access 8 (””) (2020) 16440–16455.
[211]
Zou, J., Dong, Z., Shao, A., Zhuang, P., Li, W., Zomaya, A.Y., 2018. 3D-DAG: A high performance DAG network with eventual consistency and finality. In: 2018 1st IEEE International Conference on Hot Information-Centric Networking. HotICN. pp. 262–263.

Cited By

View all
  • (2024)VM Matters: A Comparison of WASM VMs and EVMs in the Performance of Blockchain Smart ContractsACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/36411039:2(1-24)Online publication date: 27-Jan-2024
  • (2024)SecPLF: Secure Protocols for Loanable Funds against Oracle Manipulation AttacksProceedings of the 19th ACM Asia Conference on Computer and Communications Security10.1145/3634737.3637681(1394-1405)Online publication date: 1-Jul-2024
  • (2024)A secure multi-party payment channel on-chain and off-chain supervisable schemeFuture Generation Computer Systems10.1016/j.future.2024.01.012154:C(330-343)Online publication date: 1-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Network and Computer Applications
Journal of Network and Computer Applications  Volume 195, Issue C
Dec 2021
111 pages

Publisher

Academic Press Ltd.

United Kingdom

Publication History

Published: 01 December 2021

Author Tags

  1. Blockchain
  2. Scalability
  3. Throughput
  4. Latency
  5. Solutions
  6. Analysis

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)VM Matters: A Comparison of WASM VMs and EVMs in the Performance of Blockchain Smart ContractsACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/36411039:2(1-24)Online publication date: 27-Jan-2024
  • (2024)SecPLF: Secure Protocols for Loanable Funds against Oracle Manipulation AttacksProceedings of the 19th ACM Asia Conference on Computer and Communications Security10.1145/3634737.3637681(1394-1405)Online publication date: 1-Jul-2024
  • (2024)A secure multi-party payment channel on-chain and off-chain supervisable schemeFuture Generation Computer Systems10.1016/j.future.2024.01.012154:C(330-343)Online publication date: 1-May-2024
  • (2024)Enhancing privacy in commit-chains based on blind signatureExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122920244:COnline publication date: 15-Jun-2024
  • (2024)A probabilistic reliable linguistic model for blockchain-based student information management system assessmentApplied Soft Computing10.1016/j.asoc.2024.111645159:COnline publication date: 1-Jul-2024
  • (2024)Scalable and Cost-Efficient PoA Consensus-Based Blockchain Solution for Vaccination Record ManagementWireless Personal Communications: An International Journal10.1007/s11277-024-11115-1135:2(1177-1207)Online publication date: 1-Mar-2024
  • (2024)STFM: a blockchain sharding algorithm based on trust field model for heterogeneous Internet of ThingsThe Journal of Supercomputing10.1007/s11227-023-05610-880:3(3875-3901)Online publication date: 1-Feb-2024
  • (2024)SEKad: a scalable protocol for blockchain networks with enhanced broadcast efficiencyCluster Computing10.1007/s10586-023-04158-927:3(3481-3498)Online publication date: 1-Jun-2024
  • (2024)Cognitive blockchain and its application to optimize performance in blockchain systemsTransactions on Emerging Telecommunications Technologies10.1002/ett.500935:7Online publication date: 24-Jun-2024
  • (2023)BcBench: Exploring Throughput Processor Designs based on Blockchain BenchmarkingProceedings of the 38th ACM/SIGAPP Symposium on Applied Computing10.1145/3555776.3577701(88-97)Online publication date: 27-Mar-2023
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media