Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Deep image compression with multi-stage representation

Published: 01 August 2021 Publication History

Abstract

While deep learning-based image compression methods have shown impressive coding performance, most existing methods are still in the mire of two limitations: (1) unpredictable compression efficiency gain when adopting convolutional neural networks with different depths, and (2) lack of an accurate model to estimate the entropy during the training process. To address these two problems, in this paper, a deep multi-stage representation based image compression (MSRIC) method is proposed. Owing to this architecture, the detail information of shallow stages and the compact information of deep stages can be utilized for image reconstruction. Furthermore, a data-dependent channel-wised factorized probability model (DCFPM) is adopted to increase the accuracy of entropy estimation. Experimental results indicate that the proposed method guarantees better perceptual performance at a wide range of bit-rates. Also, ablation studies are carried out to validate the above mentioned technologies.

Highlights

Extracting multi-stage representation of input images improves the compression efficiency.
Data-dependent channel-wised factorized probability model improves the accuracy of entropy estimation.
Both more efficient deep network architecture and more accurate entropy estimation improve the performance of deep image compression.
Proper setting strategy of network architecture parameters maximizes the performance.

References

[1]
Wallace G.K., The JPEG still picture compression standard, IEEE Trans. Consumer Electron. 38 (1) (1992) 18–34.
[2]
Skodras A., Christopoulos C., Ebrahimi T., The jpeg 2000 still image compression standard, IEEE Signal Process. Mag. 18 (5) (2001) 36–58.
[3]
Sullivan G.J., Ohm J.-R., Han W.-J., Wiegand T., Overview of the high efficiency video coding (HEVC) standard, IEEE Trans. Circuits Syst. Video Technol. 22 (12) (2012) 1649–1668.
[4]
J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimized image compression, in: Proc. Int. Conf. Learn. Represent, 2017.
[5]
L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with compressive autoencoders, in: Proc. Int. Conf. Learn. Represent, 2017.
[6]
F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L. Van Gool, Conditional probability models for deep image compression, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 4394–4402.
[7]
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in: Proc. Int. Conf. Learn. Represent, 2018.
[8]
G. Toderici, S.M. O’Malley, S.J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, R. Sukthankar, Variable rate image compression with recurrent neural networks, in: Proc. Int. Conf. Learn. Represent, 2016.
[9]
G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, M. Covell, Full resolution image compression with recurrent neural networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 5306–5314.
[10]
N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen, S. Jin Hwang, J. Shor, G. Toderici, Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 4385–4393.
[11]
E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, L.V. Gool, Generative adversarial networks for extreme learned image compression, in: Proc. Int. Conf. Comput. Vis., 2019, pp. 221–231.
[12]
M. Akbari, J. Liang, J. Han, DSSLIC: Deep semantic segmentation-based layered image compression, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2019, pp. 2042–2046.
[13]
C. Huang, H. Liu, T. Chen, S. Pu, Q. Shen, Z. Ma, Extreme image compression via multiscale autoencoders with generative adversarial optimization, in: Proc. IEEE International Conference on Visual Communications and Image Processing, 2019.
[14]
L. Zhou, C. Cai, Y. Gao, S. Su, J. Wu, Variational autoencoder for low bit-rate image compression, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2018, pp. 2617–2620.
[15]
H. Liu, T. Chen, Q. Shen, Z. Ma, Practical stacked non-local attention modules for image compression, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2019, pp. 3–6.
[16]
Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image compression with discretized Gaussian mixture likelihoods and attention modules, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020.
[17]
Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Deep convolutional autoencoder-based lossy image compression, in: Proc. Pict. Coding Symp., 2018, pp. 253–257.
[18]
Cheng Z., Sun H., Takeuchi M., Katto J., Energy compaction-based image compression using convolutional autoencoder, IEEE Trans. Multimed. 22 (4) (2020) 860–873.
[19]
J. Campos, S. Meierhans, A. Djelouah, C. Schroers, Content adaptive optimization for neural image compression, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2019.
[20]
Li M., Zuo W., Gu S., You J., Zhang D., Learning content-weighted deep image compression, IEEE Trans. Pattern Anal. Mach. Intell. (2020),.
[21]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009, pp. 248–255.
[22]
Kingma D., Ba J., Adam: A method for stochastic optimization, Comput. Sci. (2014).
[23]
Dufaux F., Sullivan G.J., Ebrahimi T., The JPEG XR image coding standard [Standards in a Nutshell], IEEE Signal Process. Mag. 26 (6) (2009) 195–204.
[29]
Ballé J., Hwang S.J., Johnston N., David M., Tensorflow/compression, 2018, https://github.com/tensorflow/compression.
[30]
Bégaint J., Racapé F., Feltman S., Pushparaja A., CompressAI: a PyTorch library and evaluation platform for end-to-end compression research, 2020, arXiv preprint arXiv:2011.03029.
[31]
J. Ballé, Efficient nonlinear transforms for lossy image compression, in: Pict. Coding Symp., 2018, pp. 248–252.
[32]
T. Dumas, A. Roumy, C. Guillemot, Autoencoder based image compression: can the learning be quantization independent? in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2018, pp. 1188–1192.

Cited By

View all
  • (2022)Multi-tier block truncation coding model using genetic auto encoders for gray scale imagesMultimedia Tools and Applications10.1007/s11042-022-13475-x81:29(42621-42647)Online publication date: 1-Dec-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation  Volume 79, Issue C
Aug 2021
491 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 August 2021

Author Tags

  1. Deep image compression
  2. Multi-stage representation
  3. Data-dependent probability model
  4. Convolutional neural network

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Multi-tier block truncation coding model using genetic auto encoders for gray scale imagesMultimedia Tools and Applications10.1007/s11042-022-13475-x81:29(42621-42647)Online publication date: 1-Dec-2022

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media