Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Block-based progressive visual cryptography scheme with uniform progressive recovery and consistent background

Published: 01 October 2022 Publication History

Abstract

Block-based progressive visual cryptography scheme (BPVCS) divides a secret image into non-overlapping blocks and encodes each block as sub-shadows. The final shadows for BPVCS are created by combining the associated sub-shadows. When enough shadows are superimposed, some of the secret blocks will be exposed. More information will be revealed as more shadows are used. This is referred to as progressive recovery. Hou et al. introduced a ( 2, n )-BPVCS. Yang et al. further extended the ( 2, n ) scheme to a general ( k, n ) scheme. However, Yang et al. ( k, n )-BPVCS suffers from the non-uniform progressive recovery and inconsistent background of recovered secret blocks. In this paper, we introduce a ( k, n )-BPVCS to address the mentioned two defects. Theoretical analysis and experimental results are provided to illustrate the benefits of the proposed approach.

References

[1]
Liu Y., Yang C., Scalable secret image sharing scheme with essential shadows, Signal Process., Image Commun. 58 (2017) 49–55.
[2]
Li P., Liu Z., Yang C.-N., A construction method of (t, k, n)-essential secret image sharing scheme, Signal Process., Image Commun. 65 (2018) 210–220.
[3]
Liu Y., Yang C., Sun Q., Thresholds based image extraction schemes in big data environment in intelligent traffic management, IEEE Trans. Intell. Transp. Syst. 22 (7) (2020) 3952–3960.
[4]
Xiong L., Zhong X., Yang C.-N., DWT-SISA: a secure and effective discrete wavelet transform-based secret image sharing with authentication, Signal Process. 173 (2020).
[5]
Xiong L., Han X., Yang C.-N., CP-PSIS: CRT and polynomial-based progressive secret image sharing, Signal Process. 185 (2021).
[6]
Shamir A., How to share a secret, Commun. ACM (ISSN ) 22 (11) (1979) 612–613.
[7]
Naor M., Shamir A., Visual cryptography, Lecture Notes in Comput. Sci. 950 (1) (1995) 1–12.
[8]
Thien C.-C., Lin J.-C., Secret image sharing, Comput. Graph. 26 (5) (2002) 765–770.
[9]
Lin C.-C., Tsai W.-H., Secret image sharing with steganography and authentication, J. Syst. Softw. 73 (3) (2004) 405–414.
[10]
Yang C., Chen T., Yu K., Wang C., Improvements of image sharing with steganography and authentication, J. Syst. Softw. (ISSN ) 80 (7) (2007) 1070–1076.
[11]
Chang C.-C., Hsieh Y.-P., Lin C.-H., Sharing secrets in stego images with authentication, Pattern Recognit. 41 (10) (2008) 3130–3137.
[12]
Yang C.-N., Ouyang J.-F., Harn L., Steganography and authentication in image sharing without parity bits, Opt. Commun. 285 (7) (2012) 1725–1735.
[13]
Wu X., Yang C.-N., Partial reversible AMBTC-based secret image sharing with steganography, Digit. Signal Process. 93 (2019) 22–33.
[14]
Wang R.-Z., Shyu S.-J., Scalable secret image sharing, Signal Process., Image Commun. 22 (4) (2007) 363–373.
[15]
Yang C.-N., Huang S.-M., Constructions and properties of k out of n scalable secret image sharing, Opt. Commun. 283 (9) (2010) 1750–1762.
[16]
Li P., Yang C.-N., Wu C.-C., Kong Q., Ma Y., Essential secret image sharing scheme with different importance of shadows, J. Vis. Commun. Image Represent. 24 (7) (2013) 1106–1114.
[17]
Yan X., Lu Y., Yang C.-N., Zhang X., Wang S., A common method of share authentication in image secret sharing, IEEE Trans. Circuits Syst. Video Technol. 31 (7) (2020) 2896–2908.
[18]
L. Xiong, X. Han, X. Zhong, C.-N. Yang, N.N. Xiong, RSIS: A secure and reliable secret image sharing system based on extended hamming codes in industrial internet of things, IEEE Internet Things J.
[19]
X. Wu, P. Yao, Boolean-based two-in-one secret image sharing by adaptive pixel grouping, ACM Trans. Multimedia Comput. Commun. Appl. (TOMM).
[20]
Yang C., New visual secret sharing schemes using probabilistic method, Pattern Recognit. Lett. 25 (4) (2004) 486–494. ISSN 0167-8685.
[21]
Cimato S., De Prisco R., De Santis A., Probabilistic visual cryptography schemes, Comput. J. 49 (1) (2006) 97–107.
[22]
Chen T., Tsao K., Visual secret sharing by random grids revisited, Pattern Recognit. (ISSN ) 42 (9) (2009) 2203–2217.
[23]
Chen T., Tsao K., Threshold visual secret sharing by random grids, J. Syst. Softw. (ISSN ) 84 (2011) 1197–1208.
[24]
Hou Y.-C., Wei S.-C., Lin C.-Y., Random-grid-based visual cryptography schemes, IEEE Trans. Circuits Syst. Video Technol. 24 (5) (2013) 733–744.
[25]
Yan X., Liu X., Yang C.-N., An enhanced threshold visual secret sharing based on random grids, J. Real-Time Image Process. 14 (1) (2018) 61–73.
[26]
Wu X., Lai Z.-R., Random grid based color visual cryptography scheme for black and white secret images with general access structures, Signal Process., Image Commun. 75 (2019) 100–110.
[27]
Wu X., Yao P., An N., Extended XOR-based visual cryptography schemes by integer linear program, Signal Process. 186 (2021).
[28]
Shyu S.J., Chen M.C., Minimizing pixel expansion in visual cryptographic scheme for general access structures, IEEE Trans. Circuits Syst. Video Technol. 25 (9) (2015) 1557–1561.
[29]
Jia X., Wang D., Nie D., Zhang C., Collaborative visual cryptography schemes, IEEE Trans. Circuits Syst. Video Technol. 28 (5) (2018) 1056–1070.
[30]
Shyu S.J., Chen M.C., Optimum pixel expansions for threshold visual secret sharing schemes, IEEE Trans. Inf. Forensics Secur. 6 (3) (2011) 960–969.
[31]
Wu X., Sun W., Improving the visual quality of random grid-based visual secret sharing, Signal Process. 93 (5) (2013) 977–995.
[32]
Hu H., Shen G., Fu Z., Yu B., Improved contrast for threshold random-grid-based visual cryptography, KSII Trans. Internet Inf. Syst. (TIIS) 12 (7) (2018) 3401–3420.
[33]
Cimato S., De Santis A., Ferrara A.L., Masucci B., Ideal contrast visual cryptography schemes with reversing, Inform. Process. Lett. 93 (4) (2005) 199–206.
[34]
Wang D., Song T., Dong L., Yang C.-N., Optimal contrast grayscale visual cryptography schemes with reversing, IEEE Trans. Inf. Forensics Secur. 8 (12) (2013) 2059–2072.
[35]
Tuyls P., Hollmann H., Lint J., Tolhuizen L., XOR-based visual cryptography schemes, Des. Codes Cryptogr. 37 (1) (2005) 169–186.
[36]
Wu X., Sun W., Extended capabilities for XOR-based visual cryptography, IEEE Trans. Inf. Forensics Secur. 9 (10) (2014) 1592–1605.
[37]
Shen G., Liu F., Fu Z., Yu B., Perfect contrast XOR-based visual cryptography schemes via linear algebra, Des. Codes Cryptogr. 85 (1) (2017) 15–37.
[38]
Singh P., Raman B., Misra M., A (n, n) threshold non-expansible XOR based visual cryptography with unique meaningful shares, Signal Process. 142 (2018) 301–319.
[39]
Li P., Ma J., Ma Q., (T, k, n) XOR-based visual cryptography scheme with essential shadows, J. Vis. Commun. Image Represent. (2020).
[40]
Hou Y.-C., Quan Z.-Y., Tsai C.-F., Tseng A.-Y., Block-based progressive visual secret sharing, Inform. Sci. 233 (2013) 290–304.
[41]
Yang C.-N., Wu C.-C., Lin Y.-C., Kim C., Constructions and properties of general (k, n) block-based progressive visual cryptography, ETRI J. 37 (5) (2015) 979–989.
[42]
Yang C.-N., Lin Y.-C., Wu C.-C., Cheating immune block-based progressive visual cryptography, in: International Workshop on Digital Watermarking, Springer, 2013, pp. 95–108.
[43]
Yang C.-N., Lin Y.-C., Li P., Cheating immune k-out-of-n block-based progressive visual cryptography, J. Inf. Secur. Appl. 55 (2020).
[44]
Wu X., Zhang X., Towards cheat-preventing in block-based progressive visual cryptography for general access structures, Inform. Sci. 583 (2022) 73–98.
[45]
Yang C.-N., Wang D.-S., Property analysis of XOR-based visual cryptography, IEEE Trans. Circuits Syst. Video Technol. 24 (2) (2014) 189–197.
[46]
Wang R.-Z., Region incrementing visual cryptography, IEEE Signal Process. Lett. 16 (8) (2009) 659–662.
[47]
Shyu S.J., Jiang H.-W., Efficient construction for region incrementing visual cryptography, IEEE Trans. Circuits Syst. Video Technol. 22 (5) (2011) 769–777.
[48]
Yang C.-N., Shih H.-W., Wu C.-C., Harn L., k Out of n region incrementing scheme in visual cryptography, IEEE Trans. Circuits Syst. Video Technol. 22 (5) (2011) 799–810.

Index Terms

  1. Block-based progressive visual cryptography scheme with uniform progressive recovery and consistent background
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Visual Communication and Image Representation
        Journal of Visual Communication and Image Representation  Volume 88, Issue C
        Oct 2022
        251 pages

        Publisher

        Academic Press, Inc.

        United States

        Publication History

        Published: 01 October 2022

        Author Tags

        1. Secret sharing
        2. Visual cryptography
        3. Progressive recovery
        4. Consistent background
        5. Image block

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media