Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Finding association rules in semantic web data

Published: 01 February 2012 Publication History
  • Get Citation Alerts
  • Abstract

    The amount of ontologies and semantic annotations available on the Web is constantly growing. This new type of complex and heterogeneous graph-structured data raises new challenges for the data mining community. In this paper, we present a novel method for mining association rules from semantic instance data repositories expressed in RDF/(S) and OWL. We take advantage of the schema-level (i.e. Tbox) knowledge encoded in the ontology to derive appropriate transactions which will later feed traditional association rules algorithms. This process is guided by the analyst requirements, expressed in the form of query patterns. Initial experiments performed on semantic data of a biomedical application show the usefulness and efficiency of the approach.

    References

    [1]
    Workshop on Mining for and from the Semantic Web (MSW-04), 2004.
    [2]
    Agrawal, R., Imielinski, T. and Swami, A.N., Mining association rules between sets of items in large databases. 1993. ACM Press.
    [3]
    Alatas, B. and Akin, E., An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules. Soft Comput. v10 i3. 230-237.
    [4]
    Alcala-Fdez, J., Flugy-Pape, N., Bonarini, A. and Herrera, F., Analysis of the effectiveness of the genetic algorithms based on extraction of association rules. Fundam. Inf. v98. 1-14.
    [5]
    Anaya-Sánchez, H., Pons-Porrata, A. and Berlanga, R., A document clustering algorithm for discovering and describing topics. Pattern Recognit. Lett. v31 i6. 502-510.
    [6]
    . In: Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press.
    [7]
    Becker, K. and Vanzin, M., O3R: Ontology-based mechanism for a human-centered environment targeted at the analysis of navigation patterns. Know.-Based Syst. v23. 455-470.
    [8]
    Bloehdorn, S. and Sure, Y., Kernel methods for mining instance data in ontologies. In: LNCS, vol. 4825. Springer. pp. 58-71.
    [9]
    . In: Buitelaar, P., Cimiano, P., Magnini, B. (Eds.), Frontiers in Artificial Intelligence and Applications, vol. 123. IOS Press, Amsterdam.
    [10]
    Chi, Y., Muntz, R.R., Nijssen, S. and Kok, J.N., Frequent subtree mining - an overview. Fundam. Inform. v66 i1-2. 161-198.
    [11]
    Dánger, R., Ruiz-Shulcloper, J. and Llavori, R.B., Objectminer: a new approach for mining complex objects. ICEIS. v2. 42-47.
    [12]
    Fanizzi, N., d'Amato, C. and Esposito, F., Metric-based stochastic conceptual clustering for ontologies. Inf. Syst. v34 i8. 792-806.
    [13]
    B.C.M. Fung, K. Wang, M. Ester, Hierarchical document clustering using frequent itemsets, in: D. Barbará, C. Kamath (Eds.), Proceedings of the Third SIAM International Conference on Data Mining, SIAM, 2003, pp. 59-70.
    [14]
    García, A., Berlanga, R. and Dánger, R., A description clustering data mining technique for heterogeneous data. Commun. Comput. Inform. Sci., Softw. Data Technol. v10. 361-373.
    [15]
    Giannikopoulos, P., Varlamis, I. and Eirinaki, M., Mining frequent generalized patterns for web personalization in the presence of taxonomies. IJDWM. v6 i1. 58-76.
    [16]
    Hahsler, M., Gruen, B. and Hornik, K., Arules - a computational environment for mining association rules and frequent item sets. J. Stat. Softw. v14 i15. 1-25.
    [17]
    J. Hartmann, Y. Sure. A knowledge discovery workbench for the semantic web, in: Workshop on Mining for and from the Semantic Web at the ACM SIGKDD, August 2004.
    [18]
    Kiefer, C., Bernstein, A. and Locher, A., Adding data mining support to SPARQL via statistical relational learning methods. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (Eds.), Lecture Notes in Computer Science, vol. 5021. Springer. pp. 478-492.
    [19]
    Kochut, K. and Janik, M., SPARQLeR: extended SPARQL for semantic association discovery. In: LNCS, vol. 4519. Springer. pp. 145-159.
    [20]
    Kuramochi, M. and Karypis, G., Frequent subgraph discovery. IEEE Computer Society. 313-320.
    [21]
    Lent, B., Swami, A. and Widom, J., Clustering association rules. Proc. ICDE'97. 220-231.
    [22]
    Y. Li, C. Yu, H.V. Jagadish, Schema-free XQuery, in: VLDB '04: Proceedings of the 30th International Conference on Very Large Data Bases, VLDB Endowment, 2004, pp. 72-83.
    [23]
    Lisi, F.A. and Esposito, F., Mining the semantic web: a logic-based methodology. In: LNCS, vol. 3488. Springer. pp. 102-111.
    [24]
    Marinica, C. and Guillet, F., Knowledge-based interactive postmining of association rules using ontologies. IEEE Trans. Knowledge Data Eng. v22 i6. 784-797.
    [25]
    Miller, R.J. and Yang, Y., Association rules over interval data. SIGMOD Rec. v26 i2. 452-461.
    [26]
    Muggleton, S. and Raedt, L.D., Inductive logic programming: theory and methods. J. Log. Program. v19 i20. 629-679.
    [27]
    Näppilä, T., Järvelin, K. and Niemi, T., A tool for data cube construction from structurally heterogeneous xml documents. JASIST. v59 i3. 435-449.
    [28]
    Nebot, V. and Berlanga, R., Mining association rules from semantic web data. Proc. IEA/AIE. 0-10.
    [29]
    Nebot, V. and Llavori, R.B., Efficient retrieval of ontology fragments using an interval labeling scheme. Inf. Sci. v179 i24. 4151-4173.
    [30]
    Niemi, T., Näppilä, T. and Järvelin, K., A relational data harmonization approach to xml. J. Inf. Sci. v35 i5. 571-601.
    [31]
    S. Ramaswamy, S. Mahajan, A. Silberschatz. On the discovery of interesting patterns in association rules, in: Proceedings of the 24th International Conference on Very Large Data Bases, VLDB '98, San Francisco, CA, USA, 1998, pp. 368-379.
    [32]
    Srikant, R. and Agrawal, R., Mining generalized association rules. VLDB. 407-419.
    [33]
    Stumme, G., Hotho, A. and Berendt, B., Semantic web mining: state of the art and future directions. Web Semantics: Sci. Services Agents World Wide Web. v4 i2. 124-143.
    [34]
    Tagarelli, A. and Greco, S., Semantic clustering of xml documents. ACM Trans. Inf. Syst. v28 i1.
    [35]
    Tan, P.-N., Kumar, V. and Srivastava, J., Selecting the right objective measure for association analysis. Inf. Syst. v29. 293-313.
    [36]
    Tseng, M.-C., Lin, W.-Y. and Jeng, R., Updating generalized association rules with evolving taxonomies. Appl. Intell. v29 i3. 306-320.
    [37]
    Xiong, H., Tan, P.-N. and Kumar, V., Mining strong affinity association patterns in data sets with skewed support distribution. 2003. IEEE Computer Society, Washington, DC, USA.
    [38]
    Xu, Y. and Papakonstantinou, Y., Efficient keyword search for smallest LCAs in XML databases. 2005. ACM, New York, NY, USA.
    [39]
    Yun, U. and Ryu, K.H., Approximate weighted frequent pattern mining with/without noisy environments. Know.-Based Syst. v24. 73-82.
    [40]
    Zaki, M.J., Mining non-redundant association rules. Data Min. Knowl. Discov. v9. 223-248.
    [41]
    Zhang, W., Yoshida, T., Tang, X. and Wang, Q., Text clustering using frequent itemsets. Knowl.-Based Syst. v23 i5. 379-388.

    Cited By

    View all
    • (2023)HOFD: An Outdated Fact Detector for Knowledge BasesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.324822335:10(10775-10789)Online publication date: 27-Feb-2023
    • (2022)Generalized graph pattern discovery in linked data with data properties and a domain ontologyProceedings of the 37th ACM/SIGAPP Symposium on Applied Computing10.1145/3477314.3507301(1890-1899)Online publication date: 25-Apr-2022
    • (2021)RDFRulesSemantic Web10.3233/SW-20041312:4(569-602)Online publication date: 1-Jan-2021
    • Show More Cited By

    Index Terms

    1. Finding association rules in semantic web data
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Knowledge-Based Systems
          Knowledge-Based Systems  Volume 25, Issue 1
          February, 2012
          88 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 February 2012

          Author Tags

          1. Association rules
          2. Biomedical application
          3. Data mining
          4. Semantic annotation
          5. Semantic web

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)HOFD: An Outdated Fact Detector for Knowledge BasesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.324822335:10(10775-10789)Online publication date: 27-Feb-2023
          • (2022)Generalized graph pattern discovery in linked data with data properties and a domain ontologyProceedings of the 37th ACM/SIGAPP Symposium on Applied Computing10.1145/3477314.3507301(1890-1899)Online publication date: 25-Apr-2022
          • (2021)RDFRulesSemantic Web10.3233/SW-20041312:4(569-602)Online publication date: 1-Jan-2021
          • (2020)Data-driven assessment of structural evolution of RDF graphsSemantic Web10.3233/SW-20036811:5(831-853)Online publication date: 1-Jan-2020
          • (2020)Comparing automatically extracted topics from online suicidal ideation and the responses they invokeProceedings of the 35th Annual ACM Symposium on Applied Computing10.1145/3341105.3373902(1818-1825)Online publication date: 30-Mar-2020
          • (2019)An Approach Toward a Prediction of the Presence of Asbestos in Buildings Based on Incomplete Temporal Descriptions of Marketed ProductsProceedings of the 10th International Conference on Knowledge Capture10.1145/3360901.3364428(239-242)Online publication date: 23-Sep-2019
          • (2018)Measuring structural similarity between RDF graphsProceedings of the 33rd Annual ACM Symposium on Applied Computing10.1145/3167132.3167342(1960-1967)Online publication date: 9-Apr-2018
          • (2018)Rule acquisition and optimal scale selection in multi-scale formal decision contexts and their applications to smart cityFuture Generation Computer Systems10.1016/j.future.2017.03.01183:C(564-581)Online publication date: 1-Jun-2018
          • (2018)Combining Truth Discovery and RDF Knowledge Bases to Their Mutual AdvantageThe Semantic Web – ISWC 201810.1007/978-3-030-00671-6_38(652-668)Online publication date: 8-Oct-2018
          • (2017)Association Rule Mining of Personal Hobbies in Social NetworksInternational Journal of Web Services Research10.4018/IJWSR.201701010214:1(13-28)Online publication date: 1-Jan-2017
          • Show More Cited By

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media