Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

DeepWind: : a heterogeneous spatio-temporal model for wind forecasting

Published: 17 April 2024 Publication History

Abstract

Deep learning (DL) has shown great potential in enhancing the performance of traditional numerical weather prediction (NWP) methods in weather forecasting. Certain applications such as wind power generation desire more accurate wind predictions which is challenging due to limited observations and complex dynamics. To this end, this paper introduces a DL-based heterogeneous network named DeepWind for NWP correction, which can simultaneously correct the NWP of diverse wind variables across multiple weather stations. In particular, it first exerts the meteorological domain knowledge to achieve an effective transformation of target variables and then develops a heterogeneous neural network to learn spatio-temporal representations. A novel difference loss function is further designed for stable temporal learning. Moreover, this study might be the first to expose an underlying evaluation problem in deep forecasting, which we call evaluation inconsistency, thereby necessitating the assessment of model performance across diverse evaluation metrics. Experimental results demonstrate the superiority of the proposed approach over strong DL baselines, which makes it positioned for deployment in the real-world production environment. Source code is released at https://github.com/Rittersss/DeepWind.

Highlights

A novel heterogeneous neural network for wind forecasting.
A target variable transformation based on meteorological domain knowledge.
A time-related embedding technique and a novel loss function to improve model generalization.
Exposing the issue of evaluation inconsistency in spatio-temporal forecasting for the first time.

References

[1]
Bi K., Xie L., Zhang H., Chen X., Gu X., Tian Q., Accurate medium-range global weather forecasting with 3D neural networks, Nature 619 (7970) (2023) 533–538.
[2]
Rasp S., Dueben P.D., Scher S., Weyn J.A., Thuerey N., WeatherBench: a benchmark dataset for data-driven weather forecasting, J. Adv. Modelling Earth Syst. 12 (11) (2020).
[3]
C. Huang, C. Bai, S. Chan, J. Zhang, Y. Wu, MGTCF: multi-generator tropical cyclone forecasting with heterogeneous meteorological data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 5096–5104.
[4]
Wang H., Han S., Liu Y., Yan J., Li L., Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system, Appl. Energy 237 (2019) 1–10.
[5]
Glahn H.R., Lowry D.A., The use of model output statistics (MOS) in objective weather forecasting, J. Appl. Meteorol. Climatol. 11 (8) (1972) 1203–1211.
[6]
Wu Z., Pan S., Chen F., Long G., Zhang C., Philip S.Y., A comprehensive survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2020) 4–24.
[7]
Shao Z., Zhang Z., Wang F., Wei W., Xu Y., Spatial-temporal identity: a simple yet effective baseline for multivariate time series forecasting, in: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, CIKM ’22, Association for Computing Machinery, 2022, pp. 4454–4458.
[8]
A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 11121–11128.
[9]
Das A., Kong W., Leach A., Sen R., Yu R., Long-term forecasting with TiDE: time-series dense encoder, 2023, arXiv:2304.08424.
[10]
Gong Y., Li Z., Zhang J., Liu W., Zheng Y., Online spatio-temporal crowd flow distribution prediction for complex metro system, IEEE Trans. Knowl. Data Eng. 34 (2) (2022) 865–880.
[11]
L. Chen, F. Du, Y. Hu, Z. Wang, F. Wang, SwinRDM: integrate SwinRNN with diffusion model towards high-resolution and high-quality weather forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 322–330.
[12]
J. Williams, P. Neilley, J. Koval, J. McDonald, Adaptable regression method for ensemble consensus forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, 2016, pp. 3915–3921.
[13]
Masini R.P., Medeiros M.C., Mendes E.F., Machine learning advances for time series forecasting, J. Econ. Surv. 37 (1) (2023) 76–111.
[14]
Lim B., Zohren S., Time-series forecasting with deep learning: a survey, Phil. Trans. R. Soc. A 379 (2194) (2021).
[15]
Jiang R., Yin D., Wang Z., Wang Y., Deng J., Liu H., Cai Z., Deng J., Song X., Shibasaki R., DL-traff: survey and benchmark of deep learning models for urban traffic prediction, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM ’21, Association for Computing Machinery, 2021, pp. 4515–4525.
[16]
Pathak J., Subramanian S., Harrington P., Raja S., Chattopadhyay A., Mardani M., Kurth T., Hall D., Li Z., Azizzadenesheli K., Hassanzadeh P., Kashinath K., Anandkumar A., FourCastNet: a global data-driven high-resolution weather model using adaptive Fourier neural operators, 2022, arXiv:2202.11214.
[17]
Lam R., Sanchez-Gonzalez A., Willson M., Wirnsberger P., Fortunato M., Alet F., Ravuri S., Ewalds T., Eaton-Rosen Z., Hu W., et al., Learning skillful medium-range global weather forecasting, Science (2023).
[18]
Nguyen T., Brandstetter J., Kapoor A., Gupta J.K., Grover A., ClimaX: a foundation model for weather and climate, 2023, arXiv:2301.10343.
[19]
Chen K., Han T., Gong J., Bai L., Ling F., Luo J.-J., Chen X., Ma L., Zhang T., Su R., Ci Y., Li B., Yang X., Ouyang W., FengWu: pushing the skillful global medium-range weather forecast beyond 10 days lead, 2023, arXiv:2304.02948.
[20]
Chen L., Zhong X., Zhang F., Cheng Y., Xu Y., Qi Y., Li H., FuXi: a cascade machine learning forecasting system for 15-day global weather forecast, 2023, arXiv:2306.12873.
[21]
Zhang Y., Long M., Chen K., Xing L., Jin R., Jordan M.I., Wang J., Skilful nowcasting of extreme precipitation with NowcastNet, Nature 619 (7970) (2023) 526–532.
[22]
Gao Z., Shi X., Wang H., Zhu Y., Wang Y.B., Li M., Yeung D.-Y., Earthformer: exploring space-time transformers for earth system forecasting, Adv. Neural Inf. Process. Syst. 35 (2022) 25390–25403.
[23]
Singh M., Kumar B., Niyogi D., Rao A., Gill S., Chattopadhyay R., Nanjundiah R., Deep learning for improved global precipitation in numerical weather prediction systems, 2021, arXiv:2106.12045.
[24]
Singh M., B. V.S., Acharya N., Grover A., Rao S.A., Kumar B., Yang Z.-L., Niyogi D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction, 2022, arXiv:2206.11669.
[25]
Zhang X., Gong Y., Zhang C., Wu X., Guo Y., Lu W., Zhao L., Dong X., Spatio-temporal fusion and contrastive learning for urban flow prediction, Knowl.-Based Syst. 282 (2023).
[26]
Deng J., Chen X., Jiang R., Song X., Tsang I.W., A multi-view multi-task learning framework for multi-variate time series forecasting, IEEE Trans. Knowl. Data Eng. 35 (8) (2023) 7665–7680.
[27]
W. Duan, J. Xuan, M. Qiao, J. Lu, Learning from the dark: boosting graph convolutional neural networks with diverse negative samples, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 6550–6558.
[28]
Qiu M., Zhao P., Zhang K., Huang J., Shi X., Wang X., Chu W., A short-term rainfall prediction model using multi-task convolutional neural networks, in: 2017 IEEE International Conference on Data Mining, ICDM, IEEE, 2017, pp. 395–404.
[29]
Du P., Ensemble machine learning-based wind forecasting to combine NWP output with data from weather station, IEEE Trans. Sustain. Energy 10 (4) (2018) 2133–2141.
[30]
B. Wang, J. Lu, Z. Yan, H. Luo, T. Li, Y. Zheng, G. Zhang, Deep uncertainty quantification: a machine learning approach for weather forecasting, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2087–2095.
[31]
Li Y., Lang J., Ji L., Zhong J., He S., Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron, Asia-Pac. J. Atmosph. Sci. 57 (2021) 533–546.
[32]
Zhang X., Gong Y., Zhang X., Wu X., Zhang C., Dong X., Mask- and contrast-enhanced spatio-temporal learning for urban flow prediction, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM ’23, Association for Computing Machinery, 2023, pp. 3298–3307.
[33]
Shi X., Gao Z., Lausen L., Wang H., Yeung D.Y., Wong W.k., Woo W.C., Deep learning for precipitation nowcasting: a benchmark and a new model, Adv. Neural Inf. Process. Syst. 30 (2017) 5617–5627.
[34]
Ionescu V.-S., Czibula G., Mihuleţ E., DeePS at: a deep learning model for prediction of satellite images for nowcasting purposes, Procedia Comput. Sci. 192 (2021) 622–631.
[35]
Kharlova E., May D., Musilek P., Forecasting photovoltaic power production using a deep learning sequence to sequence model with attention, in: 2020 International Joint Conference on Neural Networks, IJCNN, IEEE, 2020, pp. 1–7.
[36]
Lu J., Xuan J., Zhang G., Luo X., Structural property-aware multilayer network embedding for latent factor analysis, Pattern Recognit. 76 (2018) 228–241.
[37]
Guo G., Chai B., Cheng R., Wang Y., Real-time temperature drift compensation method of a MEMS accelerometer based on deep GRU and optimized monarch butterfly algorithm, IEEE Access 11 (2023) 10355–10365.
[38]
Wang J., Wang P., Tian H., Tansey K., Liu J., Quan W., A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables, Comput. Electron. Agric. 206 (2023).
[39]
Hochreiter S., Schmidhuber J., Long short-term memory, Neural Comput. 9 (8) (1997) 1753–1780.
[40]
Cho K., van Merrienboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., Bengio Y., Learning phrase representations using RNN Encoder-Decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, Association for Computational Linguistics, 2014, pp. 1724–1734.
[41]
H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 11106–11115.
[42]
Wu H., Xu J., Wang J., Long M., Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting, in: Advances in Neural Information Processing Systems, Vol. 34, Curran Associates, Inc., 2021, pp. 22419–22430.
[43]
Zhou T., Ma Z., Wen Q., Wang X., Sun L., Jin R., FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting, in: International Conference on Machine Learning, PMLR, 2022, pp. 27268–27286.
[44]
Kingma D., Ba J., Adam: a method for stochastic optimization, 2014, arXiv:1412.6980.

Cited By

View all
  • (2024)A new information priority grey prediction model for forecasting wind electricity generation with targeted regional hierarchyExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.124199252:PAOnline publication date: 24-Jul-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Knowledge-Based Systems
Knowledge-Based Systems  Volume 286, Issue C
Feb 2024
779 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 17 April 2024

Author Tags

  1. Deep learning
  2. Wind forecasting
  3. NWP correction
  4. Multi-criteria evaluation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A new information priority grey prediction model for forecasting wind electricity generation with targeted regional hierarchyExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.124199252:PAOnline publication date: 24-Jul-2024

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media