Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Domain base dynamic convolution and distance map guidance for anterior mediastinal lesion segmentation

Published: 19 July 2024 Publication History

Abstract

The automatic segmentation of anterior mediastinal lesions in the enhanced CT image plays a significant role in clinical diagnosis. Due to the low incidence rate of anterior mediastinal disease, the data for training segmentation network may come from different hospitals, different equipment, and different operators, which leads to lower generalization and robustness of the trained network. This paper proposes an anterior mediastinal lesion segmentation method based on domain-adaptive dynamic convolution and distance map guidance. Considering the diversity of clinical data sources and equipment differences, the domain prior knowledge is added to the global average-pooling layer of the network, and the dynamic convolution forms specific network parameters for specific domains to enhance domain-specific information. Meanwhile, the Singed Distance Map (SDM) head is involved in the network according to the shape, size and position of the anterior mediastinal lesions to constraint the boundary and assist in localization. Ablation experiments demonstrate that the distance map can effectively constrain the segmentation target and reduce false positives. Both qualitative and quantitative experimental results indicate that our method can achieve more accurate anterior mediastinal lesion segmentation with greater generalization ability. Our approach achieves an overall Dice coefficient of 88.33%, which is 2.31% higher than existing state-of-the-art methods, and has achieved good performance in terms of ASSD evaluation for segmentation edges.

References

[1]
B.W. Carter, E.M. Marom, F.C. Detterbeck, Approaching the patient with an anterior mediastinal mass: a guide for clinicians, J Thoracic Oncol 9 (9) (2014) S102–S109,.
[2]
S. Suster, C.A. Moran, Histologic classification of thymoma: the World Health Organization and beyond, Hematology/oncology Clinics North America 22 (3) (2008) 381–392,.
[3]
P. Strobel, A. Bauer, B. Puppe, T. Kraushaar, A. Krein, K. Toyka, et al., Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis, J. Clin. Oncol. 22 (8) (2004) 1501–1509,.
[4]
P.M. Tecce, E.K. Fishman, J.E. Kuhlman, CT evaluation of the anterior mediastinum: spectrum of disease, Radiographics. 14 (5) (1994) 973–990,.
[5]
R. Ohira, M. Yanagawa, Y. Suzuki, A. Hata, T. Miyata, N. Kikuchi, Y. Yoshida, K. Yamagata, S. Doi, K. Ninomiya, N. Tomiyama, CT-based radiomics analysis for differentiation between thymoma and thymic carcinoma, J. Thorac. Dis. 14 (2021) 1342–1352.
[6]
J. Liu, P. Yin, S. Wang, T. Liu, C. Sun, N. Hong, CT-based radiomics signatures for predicting the risk categorization of thymic epithelial tumors, Front. Oncol. 11 (2021).
[7]
F. sensee, P.F. Jaeger, S.A.A. Kohl, et al., nnU-Net: a self-configuringmethod for deep learning-based biomedical image segmentation, Nat. Methods (2020).
[8]
X. Qin, Z. Zhang, C. Huang, M. Dehghan, O.R. Zaiane, M. Jägersand, U2-Net: going Deeper with Nested U-Structure for Salient Object Detection, ArXiv. (2020) abs/2005.09007.
[9]
Y. Xie, J. Zhang, C. Shen, Y. Xia, CoTr: efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation. In:, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, Lecture Notes in Computer Science 12903 (2021),. Springer, Cham.
[10]
Peiris, H.T.R. et al. “A Volumetric Transformer for Accurate 3D Tumor Segmentation.” ArXiv abs/2111.13300 (2021): n. pag.
[11]
C.-M. Feng et al., "Multi-Modal Transformer for Accelerated MR Imaging," in IEEe Trans. Med. ImAging, doi: 10.1109/TMI.2022.3180228.
[12]
Neil I. Weisenfeld, S. Warfield, Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence, in: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, pp. 101–104. Vol. 1.
[13]
Russell T. Shinohara, et al., Statistical normalization techniques for magnetic resonance imaging, NeuroImage: Clinical 6 (2014) 9–19.
[14]
L. Zhang, et al., Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation, IEEe Trans. Med. ImAging 39 (7) (July 2020) 2531–2540,.
[15]
Ma J. Histogram Matching Augmentation for Domain Adaptation with Application to Multi-centre, Multi-vendor and Multi-disease Cardiac Image Segmentation[C]//2021. doi:10.1007/978-3-030-68107-4_18.
[16]
W.-G. Chang, T. You, S. Seo, S. Kwak, B. Han, Domain-Specific Batch Normalization for Unsupervised Domain Adaptation, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7346–7354,.
[17]
Q. Liu, Q. Dou, L. Yu, P. Heng, MS-Net: multi-Site Network for Improving Prostate Segmentation With Heterogeneous MRI Data, IEEe Trans. Med. ImAging 39 (2020) 2713–2724.
[18]
L. Rundo, C. Han, Y. Nagano, et al., USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets[J], Neurocomputing. 365 (NOV.6) (2019) 31–43,.
[19]
Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, Z. Liu, Dynamic Convolution: attention Over Convolution Kernels, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11027–11036,.
[20]
Z. Tian, C. Shen, H. Chen, Conditional convolutions for instance segmentation[C], in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, Springer International Publishing, 2020, pp. 282–298. August 23–28, 2020, Proceedings, Part I 16.
[21]
Brandon Yang, Gabriel Bender, Quoc V. Le, Jiquan Ngiam, CondConv: conditionally Parameterized Convolutions for Efficient Inference, NeurIPS (2019).
[22]
L.E Quint, Imaging of anterior mediastinal masses[J], Cancer ImAging 7 (Special issue A) (2007) S56.
[23]
M. Shahrzad, T.S.M. Le, M. Silva, et al., Anterior mediastinal masses[J], American Journal of Roentgenology 203 (2) (2014) W128–W138.
[24]
M. Yanagawa, N. Tomiyama, Prediction of thymoma histology and stage by radiographic criteria[J], Thorac. Surg. Clin. 21 (1) (2011) 1–12.
[25]
Y. Xue, H. Tang, Z. Qiao, G. Gong, Y. Yin, Z. Qian, C. Huang, W. Fan, X. Huang, Shape-Aware Organ Segmentation by Predicting Signed Distance Maps, ArXiv. (2019) abs/1912.03849.
[26]
Jun Ma, et al., Learning Geodesic Active Contours for Embedding Object Global Information in Segmentation CNNs, IEEe Trans. Med. ImAging 40 (2020) 93–104.
[27]
X. Liu, Y. Hu, J. Chen, K. Li, Shape and boundary-aware multi-branch model for semi-supervised medical image segmentation, Comput. Biol. Med. 143 (2022 Jan 26),. Epub ahead of print. PMID: 35144178.
[28]
Shuailin Li, et al., Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images, International Conference on Medical Image Computing and Computer-Assisted Intervention (2020).
[29]
X. Luo, J. Chen, T. Song, Y. Chen, G. Wang, S. Zhang, Semi-supervised Medical Image Segmentation through Dual-task Consistency, ArXiv. (2020) abs/2009.04448.
[30]
Laurens van der Maaten, Geoffrey E. Hinton, Visualizing Data using t-SNE, Journal of Machine Learning Research 9 (2008) 2579–2605.
[31]
J. Zhang, Y. Xie, Y. Xia, C. Shen, DoDNet: learning to Segment Multi-Organ and Tumors from Multiple Partially Labeled Datasets, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 1195–1204,.
[32]
J. Hu, L. Shen, G Sun, Squeeze-and-Excitation Networks[C], in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2018,.
[33]
X. Liu, Y. Hu, J. Chen, K. Li, Shape and boundary-aware multi-branch model for semi-supervised medical image segmentation, Comput. Biol. Med. 143 (2022 Jan 26),. Epub ahead of print. PMID: 35144178.
[34]
Shuang Song, Rui Xu, Yong Luo, Bo Du, Jiancheng Yang, Kaiming Kuang, MELA Dataset: A Benchmark For Mediastinal Lesion Analysis (Training Set Part 1), Zenodo, 2022.
[35]
S. Huang, X. Han, J. Fan, J. Chen, L. Du, W. Gao, B. Liu, Y. Chen, X. Liu, Y. Wang, D. Ai, G. Ma, J. Yang, Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With Attention Gates and Lung Segmentation, Front. Oncol. 10 (2021).
[36]
Isensee Fabian, Jäger Paul, Wasserthal Jakob, Zimmerer David, Petersen Jens, Kohl Simon, Schock Justus, Klein Andre, Roß Tobias, Wirkert Sebastian, Neher Peter, Dinkelacker Stefan, Köhler Gregor, Maier-Hein Klaus, Batchgenerators - a python Framework For Data Augmentation, 2020,.
[37]
A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H.R. Roth, D. Xu, Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images, BrainLes@MICCAI (2022).
[38]
Qianfei Zhao, et al., LCOV-NET: a lightweight neural network for COVID-19 pneumonia lesion segmentation from 3D CT images, in: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 42–45.
[39]
X. Luo, W. Liao, Y. He, F. Tang, M. Wu, Y. Shen, H. Huang, T. Song, K. Li, S. Zhang, S. Zhang, G. Wang, Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: a large-scale and multi-center study, Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology (2023).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Knowledge-Based Systems
Knowledge-Based Systems  Volume 296, Issue C
Jul 2024
972 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 19 July 2024

Author Tags

  1. Domain base dynamic convolution
  2. SDM loss
  3. Anterior mediastinal lesion segmentation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media