Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A wideband low power RF Receiver Front-End for Internet-of-Things applications

Published: 16 May 2024 Publication History

Abstract

This paper presents a broadband RF receiver front-end circuit that offers advantages in both area and power consumption. The design features an innovative dual-path noise-canceling Low-Noise Amplifier (LNA) circuit, achieving impedance matching and balun functionality without the need for on-chip inductors. The RF receiver front-end circuit comprises a I and Q doublebalanced quadrature passive mixers and an 25% duty-cycle LO generator. The circuit’s broadband characteristics enable it to operate across a wide range of frequency bands. It is implemented using a 65 nm CMOS process. The core circuit, including both RF and baseband signal paths, consumes a mere 12 mW of power. Test results demonstrate that the RF receiver front-end circuit achieves a conversion gain of 35–40 dB, a noise figure (NF) below 4.8 dB, and a minimum third-order intercept point (IIP3) exceeding −6.8 dBm over the 0.1–3.1 GHz frequency range. The chip’s overall footprint is compact at 0.9 mm2, with the entire RF signal path powered by a 1 V supply, offering clear advantages in terms of compactness and low power consumption.

References

[1]
Hsu M.-T., Lin Y.-H., Jing-Cheng Y., Low power high gain CMOS LNA based on inverter cell and self-body bias for UWB receivers, Microelectron. J. 45 (2014) 1463–1469.
[2]
Shao H., Mak P.-I., Qi G., Martins R.P., A 266-μW bluetooth low-energy (BLE) receiver featuring an N -path passive balun-LNA and a pipeline down-mixing BB-extraction scheme achieving 77-dB SFDR and 3-dBm OOB-B 1 dB, IEEE J. Solid-State Circuits 57 (2022) 3669–3680.
[3]
Jann B., Chance G., Roy A.G., Balakrishnan A., Karandikar N., Brown T., Li X., Davis B., Ceballos J.L., Tanzi N., Hausmann K., Yoon H., Huang Y., Freiman A., Geren B., Pawliuk P., Ballantyne W., 21.5 A 5G sub-6 GHz zero-IF and mm-wave IF transceiver with MIMO and carrier aggregation, in: 2019 IEEE International Solid- State Circuits Conference - (ISSCC), IEEE, San Francisco, CA, USA, 2019, pp. 352–354.
[4]
Zhou R., Liu S., Liu J., Liang Y., Zhu Z., A 0.1–3.5-GHz inductorless noise-canceling CMOS LNA with IIP3 optimization technique, IEEE Trans. Microw. Theory Tech. 70 (2022) 3234–3243.
[5]
Chen C., Huang D., Zhao Y., Jin Y., Yang J., An ultra-low-voltage 2.4-GHz flicker-noise-free RF receiver front end based on switched-capacitor hybrid TIA with 4.5-dB NF and 11.5-dBm OIP3, IEEE J. Solid-State Circuits 58 (2023) 1825–1837.
[6]
Jin J., Wu J., Castello R., Manstretta D., A 400-μW IoT low-IF voltage-mode receiver front-end with charge-sharing complex filter, IEEE J. Solid-State Circuits (2022) 1.
[7]
Sano T., Mizokami M., Matsui H., Ueda K., Shibata K., Toyota K., Saitou T., Sato H., Yahagi K., Hayashi Y., 13.4 A 6.3 mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network, in: 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, IEEE, San Francisco, CA, USA, 2015, pp. 1–3.
[8]
Li Z., Yao Y., Wang Z., Cheng G., Luo L., A 1V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR, Microelectron. J. 76 (2018) 43–51.
[9]
Eskandari R., Ebrahimi A., Baghtash H.F., A wideband low power merged balance-balun-LNA and I/Q-mixer, Microelectron. J. 107 (2021).
[10]
Tiwari S., Mukherjee J., An inductorless wideband gm-boosted balun LNA with nMOS-pMOS configuration and capacitively coupled loads for sub-GHz IoT applications, IEEE Trans. Circuits Syst. II 68 (2021) 3204–3208.
[11]
Liu X., Jin J., Wang X., Zhou J., A 2.4 GHz receiver with a current-reused inductor-less noise-canceling balun LNA in 40 nm CMOS, Microelectron. J. 113 (2021).
[12]
A. Mirzaei, H. Darabi, J.C. Leete, Y. Chang, Analysis and optimization of direct-conversion receivers with 25.
[13]
J. Han, K. Kwon, Rf receiver front-end employing IIP2-enhanced 25.
[14]
Kim Jusung, Silva-Martinez J., Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications, IEEE J. Solid-State Circuits 48 (2013) 2090–2103.
[15]
Kim N., Larson L.E., Aparin V., A highly linear SAW-less CMOS receiver using a mixer with embedded Tx filtering for CDMA, IEEE J. Solid-State Circuits 44 (2009) 2126–2137.
[16]
Guo B., Prevedelli D., Castello R., Manstretta D., A 0.08mm 2 1-6.2 GHz receiver front-end with inverter-based shunt-feedback balun-LNA, in: 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, Los Angeles, CA, USA, 2020, pp. 379–382.
[17]
Wang C., Li W., Chen F., Zuo W., Pu Y., Xu H., A 0.5-4 GHz full-duplex receiver with multi-domain self-interference cancellation using capacitor stacking based second-order delay cells in RF canceller, in: 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, Denver, CO, USA, 2022, pp. 259–262.
[18]
Liao D., Dai F.F., An interference tolerant RF frontend with capacitive feedback for channel filtering, IEEE Microw. Wirel. Compon. Lett. 26 (2016) 735–737.
[19]
Shams N., Nabki F., Blocker-tolerant inductor-less harmonic selection wideband receiver front-end for 5G applications, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31 (2023) 369–381.
[20]
Han J., Kwon K., I/Q balance-enhanced wideband receiver front-end for 2G/3G/4G/5G NR cellular applications, IEEE Trans. Circuits Syst. I. Regul. Pap. 67 (2020) 1881–1891.
[21]
Sun J., Zhang M., A low power 0.5–3.0 GHz passive mixer based wideband receiver front-end, Microelectron. J. 135 (2023).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Microelectronics Journal
Microelectronics Journal  Volume 144, Issue C
Feb 2024
257 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 16 May 2024

Author Tags

  1. Low Noise Amplifier (LNA)
  2. Receiver front-end
  3. Low power
  4. Front-end inductor-less

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media