Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics

Published: 01 January 2009 Publication History

Abstract

In the context of the increasing number of works on multisensory and cross-modal effects in cerebral processing, a review is made on the functional model of human brain proposed by Justo Gonzalo (1910-1986), in relation to what he called central syndrome (caused by unilateral lesion in the parieto-occipital cortex, equidistant from the visual, tactile and auditory projection areas). The syndrome is featured by a bilateral, symmetric and multisensory involvement, and by a functional depression with dynamic effects dependent on the neural mass lost and related to physiological laws of nervous excitability. Inverted or tilted vision as well as tactile and auditive inversion, under minimum stimulus, appears as a stage of incomplete integration, being almost corrected under higher stimulus or facilitation by multisensory integration. The syndrome reveals aspects of the brain dynamics that suggest a functional continuity and unity of the cortex. A functional gradients scheme was proposed in which the specificity of the cortex is distributed with a continuous variation. This syndrome is interpreted as a scale reduction in the nervous excitability of the system, the different sensory qualities being affected allometrically according to scaling laws. A continuity from lower to higher sensory functions was proposed. The sensory growth by an increase of the stimulus or by multisensory facilitation is found to follow approximately power laws, that would reflect basic laws of biological neural networks. We restrict the analysis to the visual system.

References

[1]
Martuzzi, R., Murray, M.M. and Michel, C.M., Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cerb. Cortex. v17. 1672-1679.
[2]
Gillmeister, H. and Eimer, M., Tactile enhancement of auditory detection and perceived loudness. Brain Res. v1160. 58-68.
[3]
Kayser, C. and Logothetis, N.K., Do early sensory cortices integrate cross-modal information?. Brain Struct. Funct. v212. 121-132.
[4]
Kayser, C., Petkov, C.I., Augath, M. and Logothetis, N.K., Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. v27. 1824-1835.
[5]
Alvarado, J.C., Vaughan, J.W., Stanford, T.R. and Stein, B.E., Multisensory versus unisensory integration: contrasting modes in the superior colliculus. J. Neurophysiol. v27. 1824-1835.
[6]
Diederich, A. and Colonius, H., Why two "distractors" are better than one: modeling the effect of non-target auditory and tactile stimuli on visual saccadic reaction time. Ex. Brain Res. v179. 43-54.
[7]
Poggel, D.A., Kasten, E. and Muller-Oehring, E.M., Improving residual vision by attentional cueing in patients with brain lesions. Brain Res. v1097. 142-148.
[8]
Bizley, J.K., Nodal, F.R. and Bajo, V.M., Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb. Cortex. v17. 2172-2189.
[9]
Frassinetti, F., Bolognini, N. and Bottari, D., Audiovisual integration in patients with visual deficit. J. Cogn. Neurosci. v17. 1442-1452.
[10]
Macaluso, E., Frith, C.D. and Driver, J., Multisensory stimulation with or without saccades: fMRI evidence for crossmodal effects on sensory-specific cortices that reflect multisensory location-congruence rather than task-relevance. Meuroimage. v26. 414-425.
[11]
Théoret, H., Merabet, L. and Pascual-Leone, A., Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions. J. Physiol. Paris. v98. 221-233.
[12]
Calvert, G.A. and Thesen, T., Multisensory integration: methodological approaches and emerging principles in the human brain. J. Physiol. Paris. v98. 191-205.
[13]
Sathian, K. and Zangaladze, A., Feeling with the minds eye: contribution of visual cortex to tactile perception. Behav. Brain Res. v135. 127-132.
[14]
Cohen, L.G., Celnik, P. and Pascual-Leone, A., Functional relevance of cross-modal plasticity in blind humans. Nature. v389. 180-183.
[15]
Wallace, M.T., Ramachandran, R. and Stein, B.E., A revise view of sensory cortical parcellation. Proc. Natl. Acad. Sci. USA. v101. 2167-2172.
[16]
J. Gonzalo, Investigaciones sobre la nueva dinámica cerebral. La actividad cerebral en función de las condiciones dinámicas de la excitabilidad nerviosa, Publicaciones del Consejo Superior de Investigaciones Cientificas, Inst. S. Ramón y Cajal, Madrid, vol. I, 1945, vol. II, 1950 (Available in: Instituto Cajal, CSIC, Madrid).
[17]
Gonzalo, J., La cerebración sensorial y el desarrollo en espiral. Cruzamientos, magnificación, morfogénesis. Trab. Inst. Cajal Invest. Biol. v43. 209-260.
[18]
Gonzalo, J., Las funciones cerebrales humanas según nuevos datos y bases fisiológicas: Una introducción a los estudios de Dinámica Cerebral. Trab. Inst. Cajal Invest. Biol. v44. 157-195.
[19]
Goldstein, K. and Gelb, A., Psychologische Analysen hirnpathologischer Fälle auf Grund Untersuchungen Hirnverletzer. Z. Gesamte Neurol. Psychiatr. v41. 1-142.
[20]
Gonzalo, I. and Gonzalo, A., Functional gradients in cerebral dynamics: the J. Gonzalo theories of the sensorial cortex. In: Moreno-Diaz, R., Mira, J. (Eds.), Brain Processes, Theories and Models. An International Conference in Honor of W.S. McCulloch 25 Years After his Death, MIT Press, Massachusetts. pp. 78-87.
[21]
Gonzalo, I., Allometry in the J. Gonzalo's Model of the Sensorial Cortex. In: Lecture Notes in Computer Science, vol. 1240. Springer, Berlin. pp. 169-177.
[22]
Gonzalo, I., Spatial Inversion and Facilitation in the J. Gonzalo's Research of the Sensorial Cortex. In: Lecture Notes in Computer Science, vol. 1606. Springer, Berlin. pp. 94-103.
[23]
Gonzalo, I. and Porras, M.A., Time-dispersive Effects in the J. Gonzalo's Research on Cerebral Dynamics. In: Lecture Notes in Computer Science, vol. 2084. Springer, Berlin. pp. 150-157.
[24]
Gonzalo, I. and Porras, M.A., Intersensorial Summation as a Nonlinear Contribution to Cerebral Excitation. In: Lecture Notes in Computer Science, vol. 2686. Springer, Berlin. pp. 94-101.
[25]
Gonzalo-Fonrodona, I., Inverted or tilted inversion disorder. Rev. Neurol. v44. 157-165.
[26]
Gonzalo-Fonrodona, I. and Porras, M.A., Physiological Laws of Sensory Visual System in Relation to Scaling Power Laws in Biological Neural Networks. In: Lecture Notes in Computer Science, vol. 4527. Springer, Berlin. pp. 96-102.
[27]
Critchley, M., The Parietal Lobes. 1953. Arnold, London.
[28]
Bender, M.B. and Teuber, H.L., Neuro-ophthalmology. Prog. Neurol. Psychiatry. vIII. 163-182.
[29]
J. de Ajuriaguerra, H. Hécaen, Le Cortex Cérébral Etude Neuro-psycho-pathologique, Masson, Paris, 1949.
[30]
A.E. Delgado, Modelos Neurocibernéticos de Dinámica Cerebral, Ph.D. Thesis, E.T.S. de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 1978.
[31]
Mira, J., Delgado, A.E. and Moreno-Diaz, R., The fuzzy paradigm for knowledge representation in cerebral dynamics. Fuzzy Sets Syst. v23. 315-330.
[32]
Mira, J., Manjarrés, A. and Ros, S., Cooperative Organization of Connectivity Patterns and Receptive Fields in the Visual Pathway: Application to Adaptive Thresholding. In: Lecture Notes in Computer Science, vol. 930. Springer, Berlin. pp. 15-23.
[33]
A. Manjarrés, Modelado Computacional de la Decisión Cooperativa: Perspectivas Simbólica y Conexionista, Ph.D. Thesis, Ciencias Fisicas, Facultad de Ciencias de la UNED, Madrid, 2001.
[34]
Arias, M. and Gonzalo, I., La obra neurocientifica de Justo Gonzalo (1910-1986): El sindrome central y la metamorfopsia invertida. Neurologia. v19. 429-433.
[35]
Barraquer, L., La dinámica cerebral de Justo Gonzalo en la historia. Neurologia. v20. 169-173.
[36]
River, Y., Ben Hur, T. and Steiner, I., Reversal of vision metamorphopsia. Arch. Neurol. v53. 1362-1368.
[37]
Arias, M., Lema, C. and Requena, I., Metamorfopsia invertida: una alteración en la percepción de la situación espacial de los objetos. Neurologia. v16. 149-153.
[38]
Arjona, A. and Fernández-Romero, E., Ilusión de inclinación de la imagen visual. Descripción de dos casos y revisión de la terminologia. Neurologia. v17. 338-341.
[39]
Malis, D.D. and Guyot, J.P., Room tilt illusion as a manifestation of peripheral vestibular disorders. Ann. Otol. Rhinol. Laryngol. v112. 600-605.
[40]
Hernández, A.H., Pujadas, F. and Purroy, F., Upside down reversal of vision due to an isolated acute cerebellar ischemic infarction. J. Neurol. v253. 953-954.
[41]
Unal, A., Cila, A. and Saygi, S., Reversal of vision metamorphopsia: a manifestation of focal seizure due to cortical dysplasia. Epilepsy Behav. v8. 308-311.
[42]
Kasten, E. and Poggel, D.A., A mirror in the mind: a case of visual allaesthesia in homonymous hemianopia. Neurocase. v12. 98-106.
[43]
Perkkiö, J. and Keskinen, R., The relationship between growth and allometry. J. Theor. Biol. v113. 81-87.
[44]
Holmes, N.P., Calvert, C. and Spence, C., Tool use changes multisensory interactions in seconds: evidence from crossmodal congruency task. Exp. Brain Res. v183. 465-476.
[45]
Rowland, B.A., Quessy, S., Standford, T.R. and Stein, B.E., Multisensory integration shortens physiological latencies. J. Neurosci. v27. 5879-5884.
[46]
Baier, B., Kleinschmidt, A. and Müller, N.G., Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. J. Neurosci. v26. 12260-12265.
[47]
Schnupp, J.W., Dawe, K.L. and Pollack, G.L., The detection of multisensory stimuli in an orthogonal sensory space. Exp. Brain Res. v162. 181-190.
[48]
Laurienti, P.J., Burdette, J.H., Maldjian, J.A. and Wallace, M.T., Enhanced multisensory integration in older adults. Neurobiol. Aging. v27. 1155-1163.
[49]
Peiffer, A.M., Mozolic, J.L., Higenschmidt, C.E. and Laurienti, P.J., Age-related multisensory enhancement in a simple audiovisual detection task. Neuroreport. v18. 1077-1081.
[50]
Standford, T.R. and Stein, B.E., Superadditivity in multisensory integration: putting the computation in context. Neuroreport. v18. 787-792.
[51]
West, G.B. and Brown, J.H., The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. v208. 1575-1592.
[52]
Anderson, R.B., The power law as an emergent property. Mem. Cogn. v29. 1061-1068.
[53]
Arthurs, O.J., Stephenson, C.M.E. and Rice, K., Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. NeuroImage. v21. 540-546.
[54]
Yuval-Greenberg, S. and Deouell, L., What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition. J. Neurosci. v27. 1090-1096.
[55]
Rodriguez, E., George, N. and Lachaux, J.P., Perceptions shadow: long-distance synchronization of human brain activity. Nature. v397. 430-433.

Cited By

View all
  • (2011)Scaling effects in crossmodal improvement of visual perceptionProceedings of the 4th international conference on Interplay between natural and artificial computation: new challenges on bioinspired applications - Volume Part II10.5555/2009542.2009571(267-274)Online publication date: 30-May-2011

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 72, Issue 4-6
January, 2009
692 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 January 2009

Author Tags

  1. Brain dynamics
  2. Cross-modal effects
  3. Facilitation
  4. Inverted perception
  5. Multisensory
  6. Neurophysiology
  7. Scaling laws
  8. Tilt illusion
  9. Visual system

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2011)Scaling effects in crossmodal improvement of visual perceptionProceedings of the 4th international conference on Interplay between natural and artificial computation: new challenges on bioinspired applications - Volume Part II10.5555/2009542.2009571(267-274)Online publication date: 30-May-2011

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media