Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Combining central pattern generators and reflexes

Published: 25 December 2015 Publication History
  • Get Citation Alerts
  • Abstract

    Locomotion of quadruped robots has not yet achieved the robustness, harmony, efficiency and flexibility of its biological counterparts. Biological evidences showed that there is a two-way interaction between the Central Pattern Generators (CPGs) and the body in the locomotion process of animals. Therefore, the development of bio-inspired controllers seems to be a good and robust way to obtain an efficient and robust robotic locomotion. This contribution presents an innovative hybrid controller that generates locomotion through the combination of CPGs and reflexes. The results show that the hybrid controller is capable of producing stable quadruped locomotion with a regular stepping pattern. Furthermore, it proved to be able to deal with slopes without changing the parameters and with small obstacles, overcoming them successfully.

    References

    [1]
    J.-P. Gossard, R. Dubuc, A. Kolta, A hierarchical perspective on rhythm generation for locomotor control, breathe, walk and chew. Neural Chall.: Part II 151 (2011).
    [2]
    A.H. Cohen, The role of heterarchical control in the evolution of central pattern generators, Brain Behav. Evol., 40 (1992) 112-124.
    [3]
    H. Kimura, Y. Fukuoka, A.H. Cohen, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, Int. J. Robot. Res., 26 (2007) 475-490.
    [4]
    T. Wadden, Ö Ekeberg, A neuro-mechanical model of legged locomotion, Biol. Cybern., 79 (1998) 161-173.
    [5]
    A.D. Kuo, The relative roles of feedforward and feedback in the control of rhythmic movements, Motor Control-Champaign, 6 (2002) 129-145.
    [6]
    H.L. More, J.R. Hutchinson, D.F. Collins, D.J. Weber, S.K. Aung, J.M. Donelan, Scaling of sensorimotor control in terrestrial mammals. Proc. R. Soc. B: Biol. Sci. (2010), http://dx.doi.org/10.1098/rspb.2010.0898.
    [7]
    G.A. Cavagna, H. Thys, A. Zamboni, The sources of external work in level walking and running, J. Physiol., 262 (1976) 639-657.
    [8]
    G.A. Cavagna, N.C. Heglund, C.R. Taylor, Mechanical work in terrestrial locomotion, Am. J. Physiol., 233 (1977) 243-261.
    [9]
    H. Cruse, T. Kindermann, M. Schumm, J. Dean, J. Schmitz, Walkneta biologically inspired network to control six-legged walking, Neural Netw., 11 (1998) 1435-1447.
    [10]
    H. Kimura, Y. Fukuoka, H. Nakamura, Biologically inspired adaptive dynamic walking of the quadruped on irregular terrain, in: International Symposium on Robotics Research, vol. 9, 2000, pp. 329-336
    [11]
    Y. Fukuoka, H. Kimura, A.H. Cohen, Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, Int. J. Robot. Res., 22 (2003) 187-202.
    [12]
    S. Yakovenko, V. Gritsenko, A. Prochazka, Contribution of stretch reflexes to locomotor control, Biol. Cybern., 90 (2004) 146-155.
    [13]
    H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities, IEEE Trans. Neural Syst. Rehabil. Eng., 18 (2010) 263-273.
    [14]
    T.J. Klein, M.A. Lewis, A physical model of sensorimotor interactions during locomotion, J. Neural Eng., 9 (2012) 046011.
    [15]
    D. Owaki, L. Morikawa, A. Ishiguro, Listen to body's message: quadruped robot that fully exploits physical interaction between legs, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2012, pp. 1950-1955.
    [16]
    F. Dzeladini, J. van DenKieboom, A. Ijspeert, The contribution of a central pattern generator in a reflex-based neuromuscular model, Front. Human Neurosci., 8 (2014) 371.
    [17]
    C. Ferreira, C. Santos, A sensory-driven controller for quadruped locomotion. Int. J. Appl. Math. Comp. Sci. Submitted for Publication.
    [18]
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots, Neural Netw., 21 (2008) 642-653.
    [19]
    I.A. Rybak, N.A. Shevtsova, M. Lafreniere-Roula, D.A. McCrea, Modelling spinal circuitry involved in locomotor pattern generation, J. Physiol., 577 (2006) 617-639.
    [20]
    U. Bässler, On the definition of central pattern generator and its sensory control, Biol. Cybern., 54 (1986) 65-69.
    [21]
    S. Rossignol, R. Dubuc, J.-P. Gossard, Dynamic sensorimotor interactions in locomotion, Physiol. Rev., 86 (2006) 89-154.
    [22]
    D.A. McCrea, Spinal circuitry of sensorimotor control of locomotion, J. Physiol., 533 (2001) 41-50.
    [23]
    J. Duysens, H.W. Vande Crommert, Neural control of locomotion; part 1, Gait Posture, 7 (1998) 131-141.
    [24]
    B. Verdaasdonk, H. Koopman, F.C. vander Helm, Resonance tuning in a neuro-musculo-skeletal model of the forearm, Biol. Cybern., 96 (2007) 165-180.
    [25]
    G. Orlovsky, T. Deliagina, S. Grillner, Neuronal control of locomotion: from mollusc to man, in: Oxford Neuroscience S, Oxford University Press, 1999.{http://books.google.pt/books?id=Li0dZ8gpD3wC{
    [26]
    K.G. Pearson, Generating the walking gait, Prog. Brain Res., 143 (2004) 123-129.
    [27]
    R.E. Burke, Sir Charles Sherrington's the integrative action of the nervous system, Brain, 130 (2007) 887-894.
    [28]
    T.G. Brown, The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond., Ser. B (1911), pp. 308-319.
    [29]
    J. Duysens, K. Pearson, The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats, Exp. Brain Res., 24 (1976) 245-255.
    [30]
    S. Grillner, S. Rossignol, On the initiation of the swing phase of locomotion in chronic spinal cats, Brain Res., 146 (1978) 269-277.
    [31]
    D.A. McVea, J.M. Donelan, A. Tachibana, K.G. Pearson, A role for hip position in initiating the swing-to-stance transition in walking cats, J. Neurophysiol., 94 (2005) 3497-3508.
    [32]
    K. Pearson, Role of sensory feedback in the control of stance duration in walking cats, Brain Res. Rev., 57 (2008) 222-227.
    [33]
    H. Forssberg, S. Grillner, S. Rossignol, Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion, Brain Res., 132 (1977) 121-139.
    [34]
    J. Quevedo, K. Stecina, S. Gosgnach, D.A. McCrea, Stumbling corrective reaction during fictive locomotion in the cat, J. Neurophysiol., 94 (2005) 2045-2052.
    [35]
    R. Kaushik, M. Marcinkiewicz, J. Xiao, S. Parsons, T. Raphan, Implementation of bio-inspired vestibulo-ocular reflex in a quadrupedal robot, in: 2007 IEEE International Conference on Robotics and Automation, IEEE, 2007, pp. 4861-4866.
    [36]
    E. Brustein, S. Rossignol, Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. i. deficits and adaptive mechanisms, J. Neurophysiol., 80 (1998) 1245-1267.
    [37]
    G.W. Hiebert, P.J. Whelan, A. Prochazka, K.G. Pearson, Suppression of the corrective response to loss of ground support by stimulation of extensor group i afferents, J. Neurophysiol., 73 (1995) 416-420.
    [38]
    O. Michel, Webots, J. Adv. Robot. Syst., 1 (2004) 39-42.
    [39]
    M. Hildebrand, Symmetrical gaits of horses, Science, 150 (1965) 701-708.

    Cited By

    View all
    • (2018)Torque Controlled Biped Model Through a Bio-Inspired Controller Using Adaptive Learning2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594160(4369-4374)Online publication date: 1-Oct-2018
    • (2017)Inverse models and robust parametric-step neuro-control of a Humanoid RobotNeurocomputing10.1016/j.neucom.2016.09.107233:C(90-103)Online publication date: 12-Apr-2017

    Index Terms

    1. Combining central pattern generators and reflexes
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Neurocomputing
      Neurocomputing  Volume 170, Issue C
      December 2015
      466 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 25 December 2015

      Author Tags

      1. Central pattern generator
      2. Feedback
      3. Feedforward
      4. Predictor
      5. Quadruped locomotion
      6. Reflexes

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2018)Torque Controlled Biped Model Through a Bio-Inspired Controller Using Adaptive Learning2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS.2018.8594160(4369-4374)Online publication date: 1-Oct-2018
      • (2017)Inverse models and robust parametric-step neuro-control of a Humanoid RobotNeurocomputing10.1016/j.neucom.2016.09.107233:C(90-103)Online publication date: 12-Apr-2017

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media