Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal parameters based stochastic dot model for tone compensation of dither matrix

Published: 26 April 2016 Publication History

Abstract

The image outputs of a laser printer are accompanied with nonlinear phenomena such as dot gains and losses. As a result, a laser printer model is necessary to suppress such nonlinear distortions. This paper proposes the optimal parameters based stochastic dot model (OPSDM) and applies it to the tone compensation of dither matrices. In the proposed model, Munsell value is taken as intermediate value and a conversion method for the printouts is established at first. Then, no printer model of printout result is measured, and recurrent parameters of model are modified to obtain the optimal parameters of the stochastic dot model of printer by calculating the minimum Munsell value error between the measure result and simulated result of model. Finally, the dither matrix thresholds are modified to make the simulated result of every gray level with dither matrix close to the given level. The results of experimental indicate that the modified dither matrix with proposed model can significantly restrain the influence of the nonlinear characteristics of printer.

References

[1]
R. Ulichney, Digital Halftoning, Cambridge, MIT Press, MA, 1987.
[2]
P.G. Roetling, T.M. Holladay, Tone reproduction and screen design for pictorial electrographic printing, J. Appl. Photogr. Eng., 15 (1979) 179-182.
[3]
T.N. Pappas, D.L. Neuhoff, Model-based Halftoning, in: Proceedings of SPIE, Human Vision,¿Visual¿Processing, and¿Digital Display¿II, vol. 153,¿San Jose, CA, 1991
[4]
T.N. Pappas, C. Dong, D.L. Neuhoff, Measurement of printer parameters for model-based halftoning, J. Imag. Technol., 2 (1993) 193-204.
[5]
Q. Lin, Wiseman, Impact of electrophotographic printer dot model on halftone image quality, in: SID93 Conference Digest, 1993.
[6]
T.J. Flohr, J.P. Allebach, Halftoning via direct binary search with a stochastic dot model, in:¿IS&T's Proceedings of the 3rd Technical Symposium on Prepress, Proofing and Printing,¿1993
[7]
D.L. Lau, G.R. Arce, N.C. Gallagher, Robust halftoning with green-noise, in:¿IS&T's Image Processing Image Quality Image Capture Systems Conference (PICS'99), Savannah, Ga, USA, 1999
[8]
D.L. Lau, G.R. Arce, Modern Digital Halftoning, CRC Press, 2008.
[9]
F.A. Baqai, J.P. Allebach, Halftoning via direct binary search using analytical and stochastic printer models, IEEE Trans. Image Process., 12 (2003) 1-15.
[10]
P. Goyal, M. Gupta, D. Shaked, C. Staelin, M. Fischer, O. Shacham, R. Jodra, J.P. Allebach, Electrophotographic-model-based halftoning, in: Proceedings of¿SPIE, Color Imaging XV: Displaying, Processing, Hardcopy, and Applications,¿vol. 7528, 2010
[11]
P. Goyal, M. Gupta, D. Shaked, C. Staelin, M. Fischer, O. Shacham, T. Kashti, J.P. Allebach, Electro-photographic model based stochastic clustered-dot halftoning with direct binary search, in: Proceedings of the¿18th IEEE International Conference on Image Processing (ICIP), 2011
[12]
P. Goyal, M. Gupta, C. Staelin, M. Fischer, O. Shacham, J.P. Allebach, Clustered-dot halftoning with direct binary search, IEEE Trans. Image Process., 22 (2013) 473-487.
[13]
Y. Ju, T. Kashti, T. Frank, D. Kella, D. Shaked, M. Fischer, R. Ulichney, J.P. Allebach, Black-box models for laser electro photographic printers recent progress, in: Proceedings of the¿IS&T, NIP29 29th International Conference on Digital Printing Technologies, 2013
[14]
M.R. Luo, Development of colour-difference formulae, Rev. Prog. Color. Relat. Top., 32 (2002) 28-39.
[15]
J. Koenderink, Color for the Sciences, The MIT Press, Massachusetts, 2010.
[16]
J.H. Ladd, J.E. Pinney, Empirical relationships with the Munsell Value scale, Proc. Inst. Radio Eng. 43, (9), 1955, 1137.
[17]
G. Berkeley, Read Books Press, 2008.
[18]
Q. Lin, Screen design for printing, in: Proceedings of IEEE International Conference on Image Processing, vol. 2, 1995, pp. 331-334
[19]
D.L. Lau, G.R. Acer, N.C. Gallagher, Digital halftoning by means of green-noise masks, J. Opt. Soc. Am., 16 (1999) 1575-1586.
[20]
J. Yu, Y. Rui, D. Tao, Click prediction for web image reranking using multimodal sparse coding, IEEE Trans. Image Process., 23 (2014) 2019-2032.
[21]
J. Yu, Y. Rui, Y.Y. Tang, D. Tao, High-order distance based multiview stochastic learning in image classification, IEEE Trans. Cybern., 44 (2014) 2431-2442.
[22]
J. Yu, Y. Rui, B. Chen, Exploiting click constraints and multiview features for image reranking, IEEE Trans. Multimed., 16 (2014) 159-168.
[23]
J. Yu, D. Tao, Y. Rui, Learning to rank using user clicks and visual features for image retrieval, IEEE Trans. Cybern. (IEEE TCYB), 45 (2015) 767-779.
[24]
J. Yu, D. Tao, Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research, Wiley-IEEE Press, 2013.
[25]
B. Du, L. Zhang, A discriminative metric learning based anomaly detection method, IEEE Trans. Geosci. Remote¿Sens., 52 (2014) 6844-6857.
[26]
B. Du, L. Zhang, Target detection based on a dynamic subspace, Pattern Recognit., 47 (2014) 344-358.
[27]
B. Du, L. Zhang, Random-selection-based anomaly detector for hyperspectral imagery, IEEE Trans. Geosci. Remote¿Sens., 49 (2011) 1578-1589.
[28]
B. Du, Y. Zhang, L. Zhang, A hypothesis independent subpixel target detector for hyperspectral Images, Signal Process., 110 (2015) 244-249.
  1. Optimal parameters based stochastic dot model for tone compensation of dither matrix

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Neurocomputing
    Neurocomputing  Volume 187, Issue C
    April 2016
    133 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 26 April 2016

    Author Tags

    1. Munsell value
    2. Optimal parameters
    3. Printer model
    4. Tone compensation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media