Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Using FTOC to track shuttlecock for the badminton robot

Published: 21 March 2019 Publication History

Abstract

Sport video analysis is gaining popularity recently owing to its importance in understanding sports and improving the performance of athletes. In this paper we focus on shuttlecock tracking algorithm. Particularly, a novel fast tracking based on object center (i.e., FTOC) method by fusing heterogeneous cues and AdaBoost algorithm are proposed to improve the tracking performance for a robot. Experimental results show that the proposed FTOC tracking method performs favorably against many other popular tracking approaches, such as TLD, MIL, KCF, DCF_CA, SMAF_CA, KCC, DSN, COKCF, etc., in term of speed, accuracy, and robustness, especially in challenging scenarios such as scale variations and background clutter. We further demonstrate the feasibility of the FTOC algorithm in a real-time ZED binocular camera based 3D shuttlecock tracking system for a robot.

References

[1]
H.K. Galoogahi, T. Sim, S. Lucey, Correlation filters with limited boundaries, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4630–4638,.
[2]
H. Yang, L. Shao, F. Zheng, L. Wang, Z. Song, Recent advances and trends in visual tracking: areview, Neurocomputing 74 (18) (2011) 3823–3831.
[3]
K. Briechle, U.D. Hanebeck, Template matching using fast normalized cross correlation, Proc. SPIE, 4387, 2001, pp. 95–102.
[4]
S. Baker, I. Matthews, Lucas-kanade 20 years on: a unifying framework, Int. J. Comput. Vision 56 (3) (2004) 221–255.
[5]
H.T. Nguyen, A.W.M. Smeulders, Fast occluded object tracking by a robust appearance filter, IEEE Trans. Pattern Anal. Mach. Intell. 26 (8) (2004) 1099–1104,.
[6]
D.A. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental learning for robust visual tracking, Int. J. Comput. Vision 77 (1) (2008) 125–141.
[7]
J. Kwon, F.C. Park, Visual tracking via geometric particle filtering on the affine group with optimal importance functions, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 991–998.
[8]
J. Kwon, K.M. Lee, Tracking by sampling trackers, International Conference on Computer Vision, 2011, pp. 1195–1202.
[9]
S. Zhang, H. Yao, H. Zhou, X. Sun, S. Liu, Robust visual tracking based on online learning sparse representation, Neurocomputing 100 (2013) 31–40.
[10]
Q. Wang, J. Fang, Y. Yuan, Multi-cue based tracking, Neurocomputing 131 (2014) 227–236.
[11]
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, 2001,.
[12]
L. Breiman, Random forest, Mach. Learn. 45 (2001) 5–32.
[13]
H.T. Nguyen, A.W. Smeulders, Robust tracking using foreground-background texture discrimination, Int. J. Comput. Vision 69 (3) (2006) 277–293.
[14]
M. Godec, P.M. Roth, H. Bischof, Hough-based tracking of non-rigid objects, Comput. Vision Image Understanding 117 (10) (2013) 1245–1256.
[15]
S. Wang, H. Lu, F. Yang, M.H. Yang, Superpixel tracking, International Conference on Computer Vision, 2011, pp. 1323–1330.
[16]
B. Babenko, M.H. Yang, S. Belongie, Visual tracking with online multiple instance learning, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 983–990,.
[17]
Z. Kalal, J. Matas, K. Mikolajczyk, P-n learning: bootstrapping binary classifiers by structural constraints, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 49–56,.
[18]
S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.M. Cheng, S.L. Hicks, P.H.S. Torr, Struck: Structured output tracking with kernels, IEEE Trans. Pattern Anal. Mach. Intell. 38 (10) (2016) 2096–2109,.
[19]
Q. Guo, W. Feng, C. Zhou, C.M. Pun, B. Wu, Structure-regularized compressive tracking with online data-driven sampling, IEEE Trans. Image Process. PP (99) (2017) 1.
[20]
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking with kernelized correlation filters, IEEE Trans. Pattern Anal. Mach.Intell. 37 (3) (2015) 583–596,.
[21]
C. Wang, L. Zhang, L. Xie, J. Yuan, Kernel cross-correlator, AAAI Conference on Artificial Intelligence, 2018.
[22]
L. Zhang, P.N. Suganthan, Robust visual tracking via co-trained kernelized correlation filters, Pattern Recognit. 69 (2017) 82–93.
[23]
R. Han, Q. Guo, W. Feng, Content-related spatial regularization for visual object tracking, ICME, 2018.
[24]
L. Zhang, P.N. Suganthan, Visual tracking with convolutional random vector functional link network, IEEE Trans. Cybern. 47 (10) (2017) 3243–3253.
[25]
L. Zhang, P.N. Suganthan, Visual tracking with convolutional neural network, Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on, 2015, pp. 2072–2077.
[26]
G. Wu, W. Lu, G. Gao, C. Zhao, J. Liu, Regional deep learning model for visual tracking, Neurocomputing 175 (2016) 310–323.
[27]
L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi, P.H. Torr, Fully-convolutional siamese networks for object tracking, European conference on computer vision, Springer, 2016, pp. 850–865.
[28]
Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, S. Wang, Learning dynamic siamese network for visual object tracking, IEEE International Conference on Computer Vision, 2017, pp. 1781–1789.
[29]
C. Jiang, J. Xiao, Y. Xie, T. Tillo, K. Huang, Siamese network ensemble for visual tracking, Neurocomputing 275 (2018) 2892–2903.
[30]
Y. Wu, J. Lim, M.H. Yang, Object tracking benchmark, IEEE Trans. Pattern Anal. Mach. Intell. 37 (9) (2015) 1834–1848,.
[31]
J. Kwon, K.M. Lee, Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1208–1215,.
[32]
P. Liang, E. Blasch, H. Ling, Encoding color information for visual tracking: algorithms and benchmark, IEEE Trans. Image Process. 24 (12) (2015) 5630–5644,.
[33]
A.W.M. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, M. Shah, Visual tracking: an experimental survey, IEEE Trans. Pattern Anal. Mach.Intell. 36 (7) (2014) 1442–1468,.
[34]
Q. Yu, T.B. Dinh, G. Medioni, Online tracking and reacquisition using co-trained generative and discriminative trackers, European conference on computer vision, Springer, 2008, pp. 678–691.
[35]
R. Liu, J. Cheng, H. Lu, A robust boosting tracker with minimum error bound in a co-training framework, 2009 IEEE 12th International Conference on Computer Vision, 2009, pp. 1459–1466,.
[36]
J. Santner, C. Leistner, A. Saffari, T. Pock, H. Bischof, Prost: parallel robust online simple tracking, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 723–730,.
[37]
T.B. Dinh, G. Medioni, Co-training framework of generative and discriminative trackers with partial occlusion handling, 2011 IEEE Workshop on Applications of Computer Vision (WACV), 2011, pp. 642–649,.
[38]
W. Zhong, H. Lu, M.H. Yang, Robust object tracking via sparse collaborative appearance model, IEEE Trans. Image Process. 23 (5) (2014) 2356–2368,.
[39]
L. Zhang, J. Varadarajan, P.N. Suganthan, N. Ahuja, P. Moulin, Robust visual tracking using oblique random forests, IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5825–5834.
[40]
A scale adaptive kernel correlation filter tracker with feature integration, in: European Conference on Computer Vision, 2014, pp. 254–265.
[41]
C. Ma, X. Yang, C. Zhang, M.H. Yang, Long-term correlation tracking, Computer Vision and Pattern Recognition, 2015, pp. 5388–5396.
[42]
A. Bibi, M. Mueller, B. Ghanem, Target response adaptation for correlation filter tracking (2016) 419–433.
[43]
M. Mueller, N. Smith, B. Ghanem, Context-aware correlation filter tracking, IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1387–1395.
[44]
D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544–2550,.
[45]
M. Danelljan, G. Hager, F. Shahbaz Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, The IEEE International Conference on Computer Vision (ICCV), 2015.
[46]
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, European conference on computer vision, Springer, 2012, pp. 702–715.
[47]
B. Bai, B. Zhong, G. Ouyang, P. Wang, X. Liu, Z. Chen, C. Wang, Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues, Neurocomputing (2018).
[48]
B. Babenko, M.H. Yang, S. Belongie, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 33 (8) (2011) 1619–1632.
[49]
B. Yang, Subspace tracking based on the projection approach and the recursive least squares method, Acoustics, Speech, and Signal Processing, 1993, pp. 145–148.
[50]
W. Zhong, Camera calibration method of binocular stereo vision based on opencv, Adv. Opt. Instrum. Res. Lab. (2015) 96752C.
[51]
Space coordinate calculation under binocular vision, (http://blog.csdn.net/qq_15947787/article/details/53366592).
[52]
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2001, p. 511.
[53]
Y. Ren, L. Zhang, P.N. Suganthan, Ensemble classification and regression-recent developments, applications and future directions, IEEE Comput. Intell. Mag. 11 (1) (2016) 41–53.
[54]
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, pp. 886–893.
[55]
T. Ojala, M. Pietik Inen, Topi, Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns, Springer Berlin Heidelberg, 2000.
[56]
H. Grabner, H. Bischof, On-line boosting and vision, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, pp. 260–267.
[57]
A. Ganoun, N. Ould-Dris, R. Canals, Tracking system using camshift and feature points, Signal Processing Conference, 2006 European, 2006, pp. 1–5.
[58]
A. Varfolomieiev, O. Lysenko, An improved algorithm of median flow for visual object tracking and its implementation on ti omap, Education and Research Conference, 2012, pp. 261–265.
[59]
T.K. Kim, T. Woodley, B. Stenger, B. Stenger, Online multiple classifier boosting for object tracking, IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2009, pp. 1–6.

Cited By

View all
  • (2022)Changes in Physical Function of Shuttlecock Players after Short-Term Intensive Training based on Data MiningComputational Intelligence and Neuroscience10.1155/2022/81535212022Online publication date: 1-Jan-2022
  • (2022)Research on Badminton Teaching Technology Based on Human Pose Estimation AlgorithmScientific Programming10.1155/2022/46643882022Online publication date: 1-Jan-2022
  • (2022)The Application of Wireless Network-Based Artificial Intelligence Robots in Badminton Teaching and TrainingComputational Intelligence and Neuroscience10.1155/2022/39103072022Online publication date: 1-Jan-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 334, Issue C
Mar 2019
276 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 21 March 2019

Author Tags

  1. Badminton robot
  2. Tracking-by-detection
  3. FTOC
  4. AdaBoost
  5. ZED binocular camera

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Changes in Physical Function of Shuttlecock Players after Short-Term Intensive Training based on Data MiningComputational Intelligence and Neuroscience10.1155/2022/81535212022Online publication date: 1-Jan-2022
  • (2022)Research on Badminton Teaching Technology Based on Human Pose Estimation AlgorithmScientific Programming10.1155/2022/46643882022Online publication date: 1-Jan-2022
  • (2022)The Application of Wireless Network-Based Artificial Intelligence Robots in Badminton Teaching and TrainingComputational Intelligence and Neuroscience10.1155/2022/39103072022Online publication date: 1-Jan-2022
  • (2022)Research on Badminton Player’s Step Training Model Based on Big Data and IoT NetworksSecurity and Communication Networks10.1155/2022/19723892022Online publication date: 1-Jan-2022
  • (2021)A Highly Efficient Vehicle Taillight Detection Approach Based on Deep LearningIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2020.302742122:7(4716-4726)Online publication date: 1-Jul-2021
  • (2021)Motion Strategy Using Opponent Player’s Serial Learning for Air-Hockey Robots2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS51168.2021.9635854(952-957)Online publication date: 27-Sep-2021
  • (2020)The Design of Compact Robotic-Assisted Needle Position System with MPC-Based Remote ControlComplexity10.1155/2020/54060842020Online publication date: 1-Jan-2020
  • (2019)The Action Control Model for Robotic Fish Using Improved Extreme Learning MachineComplexity10.1155/2019/74560312019Online publication date: 25-Feb-2019

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media